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Abstract 

How delocalized is an EELS signal? For  instance, how far from a silicon atom must the electron probe be before 
a Si edge can be detected? A crude estimate of a localization length (A/0  E) suggests a m~ximum impact parameter  
of 50 A for a typical plasmon loss. Yet with care, subnanometer resolution plasmon maps can be achieved. The 
improved resolution cannot be accounted for by dielectric screening as the dielectric screening length diverges for 
energy losses at and above the plasmon frequency. Niels Bohr [1] offered a classical explanation in 1913 leading to 
his adiabatic criterion for a cutoff impact parameter  b m a  x = v / / og ,  for a fast electron, velocity v, and an energy loss of 
frequency o~. By starting with a quantum mechanical expression for  the energy loss, both the semiclassical limit and 
surprisingly Bohr's criterion can be recovered and are found to be in excellent quantitative agreement with 
experiment. We show bm~ x can be thought of as a "dynamic" screening length and plays the same role as the 
screening length does in the elastic scattering from a Thomas-Fermi  atom. In fact the parallel component of the 
inelastic scattering has the same form as elastic scattering from a Thomas-Fermi  atom and much o f  our  
understanding of the role of the detector in annular dark-field imaging can be applied here. However, in inelastic 
scattering a dramatic improvement in resolution can be obtained with an off-axis detector as suggested by Ritchie 
and Howie [2]. Here we present experimental evidence of such an effect. 

1. Introduct ion 

Ine las t i c  e l ec t ron  sca t te r ing  is o f ten  v iewed  as 
a d e l o c a l i z e d  process ,  espec ia l ly  for  smal l  ene rgy  
losses.  Bohr ' s  ad i aba t i c  c r i t e r ion  !1] suggests  a 
m a x i m u m  impac t  p a r a m e t e r  of  50 A for  a typical  
p l a s m o n  loss ye t  Fig.  1 shows 8 A re so lu t ion  can  
be  achieved.  Ea r l i e r  work  by Sche infe in  and  
I saacson  [3] and  Col l iex  et  al. [4] have  r e p o r t e d  
s imi lar  results .  Koh l  and  rose  [5] have used  the  
first  Born  a p p r o x i m a t i o n  to ca lcu la te  the  in tens i ty  
d i s t r ibu t ion  expec ted  for  p l a s m o n  images  in a 
conven t iona l  t r ansmiss ion  e l ec t ron  mic roscope  
( C T E M )  and  a scanning  t r ansmiss ion  e l ec t ron  

mic roscope  (STEM) .  They  also f ind  the  sca t te r ing  
to  be  m o r e  loca l ized  t han  the  ru l e -o f - t humb  argu-  
m e n t  might  suggest .  R i t ch ie  and  Howie  [2] have 
shown tha t  the  first  Born  a p p r o x i m a t i o n  r educes  
to a semiclass ica l  de sc r ip t ion  of  ine las t ic  e l ec t ron  
sca t te r ing  in a S T E M  with  a very la rge  de tec to r .  
In  this case  they  f ind an  i ncohe ren t  imaging  re-  
sults w h e r e  the  inc iden t  p r o b e  in tens i ty  is con- 
volved with  the  ine las t ic  r e sponse  f rom a classical  
e l ec t ron  to fo rm the  f inal  image.  A l t h o u g h  in 
expe r imen t s  the  co l lec to r  is o f ten  the  same size 
as the  objec t ive  ape r tu re ,  the  semic lass ica l  de-  
scr ip t ion  seems  to show the  s ame  t r ends  as seen  
expe r imen ta l ly  [6-8]  a t  leas t  a t  g r e a t e r  t han  a 
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nanometer  length scale. Kohl and Rose [5] find 
that the intensity distribution for a small collector 
or for a C r E M  is dramatically different from the 
semiclassical limit, especially for length scales 
smaller than 1 nm. This is of some concern as it is 
becoming more common to perform EELS (elec- 
tron energy loss spectroscopy) using atomic-sized 
probes with STEMs [9-11] and similar conditions 
may yet be reached in the new generation of 
CTEMs equipped with field emission guns. 

The earliest semiclassical calculation (a classi- 
cal electron exciting a quantum system) is due to 
Fermi in 1924 [12]. Mott  [13] and Frame [14] 
showed that the impact paramete r  integration of 
Gaunt  [15] is equivalent to Bethe's  results using 
plane waves [16]. This derivation for scattering 
from a single dipole is reviewed in Bolton and 
Brown [17] as are some more complicated geome- 
tries. Calculations have also been made for other 
specimen shapes such as spheres, semi-infinite 
planes, and planar interfaces [18,19,2]. 

The main difficulties in making quantitative 
comparisons with theory have been the very weak 
signals involved, uncertainties in the shape of the 
specimen and Position of the  probe. By using 
single electron pulse counting and simultaneously 
recording the annular dark-field (ADF) signal 
with the energy loss spectrum we are able to 
make quantitative comparisons of theory with 
experiments per formed using a STEM. In partic- 

ular we find that a novel off-axis collector scheme 
suggested by Ritchie and Howie [2] does lead to 
an improved spatial resolution in energy loss 
imaging. The improvement  is dramatic, allowing 
the plasmon image to have the same resolution as 
the A D F  image recorded simultaneously. After  
reviewing the classical, and quantum theories of 
delocalization in inelastic scattering, we calculate 
the expected off-axis collector resolution and find 
it to be in good agreement  with the unexpected 
experimental  results. A very simple explanation 
can be found within the quantum treatment  and 
is best understood as an inelastic "weak  beam"  
imaging. Some more typical instrument geome- 
tries are also considered such as a STEM with a 
very large or very small detector. The large col- 
lector limit leads to incoherent imaging from 
which the semiclassical limit can be recovered 
were the probe is t reated classically. For the 
small collector limit (which is similar to condi- 
tions in a CTEM) wave-like propert ies  of the 
probe become important.  The difference in mea- 
sured signals is essentially an illustration of the 
wave-par t ic le  duality of  the electron wavepacket. 

2. Classical theory 

Classically the energy loss of a swift electron, 
velocity v, passing a bound electron at impact 

Fig. 1. Plasmon loss maps of a diamond grain (left of each image) embedded in a ZnS matrix. Images recorded on a VG STEM 
with a 100 kV beam, C s = 3.3 mm, 10 mrad objective and collector apertures and a 5 ms dwell time per pixel. (a) ZnS bulk plasmon 
loss at 18 eV, (b) a-C or diamond surface plasmon at 25 eV and (c) diamond bulk plasmon at 34 eV. Specimen supplied by Yujiun 
Tzou. 
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parameter  b is given in the impulse approxima- 
tion as [1,20] 

2e4(1 1 
A E ( b ) = --m-~v2 ~-~ ] . (1) 

This expression is valid provided the collision 
time b / v  is short compared to the restoring 
period of  the bound electron 1/to (i.e. the elec- 
tric field generated by the swift electron is above 
the resonance frequency of the bound electron). 
When the collision time is longer, the bound 
electron can follow the time varying field and 
remains bound so the interaction is adiabatic. 
The crossover a t  bma x = u/to is Bohr's cutoff be- 
yond which the target is "dynamically screened". 
The dynamical screening arises from the more 
slowly varying electric field seen at large dis- 
tances, rather than any property of the interven- 
ing medium and so will be expected in free space 
as well. 

The  classical result for AE(b)  is not correct 
quantum mechanically since not every collision at 
b loses an energy AE(b), but rather has a differ- 
ent probability P(b, E)  of losing a discrete 
amount of energy E at different b. For  a large 
number of collisions, the average energy loss at b 
will be P(b, E ) - E  quantum mechanically and 
AE(b)  classically. In the limit where the incident 
electron can be t reated as a classical particle, the 
correspondence principle requires P(b, E i ) =  
A E ( b ) / E  i so P(b, E)  ~ 1 /b  2 for b < bma x and is 
rapidly damped for b > bma x. Since the 1/b  2 de- 
pendence came from considering only the dipole 
contribution of the time-varying electric field and 
Bohr's argument must hold for any multipole 
field, P(b, E)  at large b must decay faster than 
any power law. So we might in fact expect this 
dynamic screening will lead to an exponential 
decay at large distances. 

Some hint of this can be seen in the classical 
expression for energy transfer from a fast elec- 
tron to a harmonically bound charge with reso- 
nant frequency to. The spatial dependence of the 
energy transfer can be found by Fourier-analyz- 
ing the time-varying dipole field of the fast elec- 
tron to give (see Chapter  13.2 of Jackson [20] - 

we give the non-relativistic expression here al- 
though relativistic corrections are important; their 
main effects are changing bma x t o  b m a x =  I/u/to 
and reducing the parallel to perpendicular com- 
ponents by 1 / y  2) 2e4( )2 
a E ( b )  = - -  

mu 2 

× [Kg(b/bmax) +K2(b/bmax)].  (2) 

K 0 and K 1 are modified Bessel functions which 
decay asymptotically as K, (x )  oc e-X~ v/~ for large 
x. So when b >> bmax, the classical energy loss and 
the corresponding quantum mechanical signal 
P(b, E) should decay exponentially with a screen- 
ing length bmaJ2. The impulse approximation is 
recovered for small distances as then Kx(x) at 1/x  
so AE(b)  ot 1/b  z. This diverges at the origin clas- 
sically as the electron is t reated as a point charge. 
Quantum mechanically we would expect P(b, E) 
o~ 1/b 2 so long as b is larger than the shortest 
wavelengths in the electron wave packet. 

3. Quantum theory 

The semiclassical models where the incident 
electron is t reated as a classical point charge 
while the interactions with the target are treated 
quantum mechanically should be an adequate 
description of the delocalization provided the 
probe width is much smaller than the impact 
parameter  and all the scattered electrons are 
collected. Again when the probe is much larger 
than the target then using a single plane wave in 
first Born approximation is sufficient to calculate 
the quantum mechanical cross section. 

If the probe is of the same dimensions as the 
target then the probe wave function a(r - b) can- 
not be t reated as a single plane wave and must be 
Fourier-analyzed in its components A(k) .  Such a 
calculation is given in Appendix A where the 
scattering is treated within the first Born approxi- 
mation and the momentum transfer is assumed to 
be small. As this is a first-order perturbation 
theory, the probe and the target interact linearly 
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so P(b, E) can be expressed as a convolution of 
real spaces variables (Eq. (A.22)): 

4Ry r 
P(b, E) = ~ o  J a ( p - b ) a * ( p ' - b )  

X w ( p ,  p', E ) O ( p - p ' )  d2p d2p '. 

(3) 

w(p, p', E) is a transmission function of sorts 
called the "cross spectral object transparency" by 
Rose [21] (specific forms of w(p, p', E) are dis- 
cussed in Appendix B). P(b, E) depends on the 
p robe  wave functions, rather than their ampli- 
tudes so coherence effects might be expected. 
The detector function D ( p - p ' )  can mix signals 
from different p, p' so it affects the size of the 
coherence volume. This is best illustrated by con- 
sidering the (not so) special case of a circular 
collector centered on the optic axis so 

27r/32j,(ko/3o I p - p '  l) 
D(v  - v ' )  = (4) 

ko/30 [ P - p' [ 

This can be simplified further for the two limiting 
cases k0/301p - p ' l  >> 1 and k0/30 ] p - p ' l  << 1. 
Since the spatial extent of I p - p ' l  = 1/00 (from 
the overlap of the probe wave functions), the first 
case becomes /30 >> 00 and the second /3o << 00 
i.e. the limits are for a STEM with large and small 
collector apertures, respectively. The large collec- 
tor limit leads to incoherent imaging and can be 
reduced to the semiclassical limit where the probe 
can be treated classically while wave-like proper- 
ties of the probe become important for the small 
collector limit (which is similar to conditions in a 
CTEM). 

3.1. Incoherent imaging with a large detector 

For large ko/3 o Eq. (4) becomes 

D(p - p ' )  = ---, 2~-/3~6( I p - p '  I), (5) 

which allows Eq. (3) to be rewritten as a convolu- 
tion of the probe intensity with the cross spectral 
transparency function: 

4Ry 
P(b ,E)=- -~o  l a ( b l l 2 ® w ( p , p , E  ). (6) 

For a classical electron I a(b) l 2 = 6(b) so P(b, E) 
ct w(b, b, E). The diagonal terms of the cross 
spectral object transparency can then be identi- 
fied with the probability for an energy loss E of a 
classical electron at b from a quantum excitation 
of the specimen. To compare Eq. (6) with the 
classical discussion it is useful to have an explicit 
form for w(p, p', E) and the simplest case is that 
for a dipole transition (see Appendix B). 
Throughout  the theory section of this paper we 
will consider only the response from a single 
dipole for illustrative purposes. The appropriate 
quantum mechanical form for an assembly of 
independent scatterers can be found in Ref. [5] 
and a simple model of a surface plasmon is given 
in Ref. [2]. 

Writing zfi and xfi as the parallel and perpen- 
dicular components of the dipole matrix elements 
rif = (~ f  [ r [ q~i) then substituting w(p, p, E) from 
Eq. (B.10) into (6) and noting that koO E = 1/bm~ x 
we get ()2()2 

Ry 1 
P . ( b ,  E )  = 2 

+lKl(b/bm~)Xfi cos y l2]. (7) 

This is proportional to AE(b),  the classical en- 
ergy loss from a dipole, discussed in Section 2 
which must be expected from the correspondence 
principle. The result is not classical. Although we 
know where the electron scattered (it was at 
impact parameter  b), we do not know the scatter- 
ing angle (i.e. the momentum transfer). This is 
because the correspondence with the classical 
swift particle could only be made when the detec- 
tor was chosen to accept electrons scattered to all 
angles (fl0 -~ 7r in Eq. (5)). If a small collector is 
used, then wave-like (interference) effects can be 
observed. 

A semiclassical result similar to Eq. (7) was 
first deduced by Fermi [12] by Fourier-decompos- 
ing the electric field of the swift electron as was 
done for the classical argument leading to Eq. (2). 
However, he realized that the coupling of each 
component of the time-varying electric field to 
the target was the same as that for X-rays of 
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equivalent frequency. For  an isotropic material 
with X-ray absorption coefficient a(o)) he found 

PD( b, E )  

2 

[ K2( b/bmax) + K2( b/bmax) ]a( oo). 

(8) 

The spatial dependence of a given energy loss is 
then independent  of the details of the absorption 
coefficient and depends only on the frequency. 
(This holds exactly at and above the plasmon 
frequency since plasmons cannot screen them- 
selves.) Fermi's argument led to the method of 
"effective photons" pioneered by Weiz~icker and 
Williams [20,22] where the energy loss of charged 
particles is analyzed in terms of the equivalent 
photon field from that moving charge. This is 
often exploited in nuclear physics [23] to generate 
very high energy intense bursts of effective pho- 
tons by scattering highly charged particles at small 
impact parameters.  

The equivalent photon field turns out to be 
short-ranged and for a very simple reason. The 
fast electrons in the incident probe are assumed 
to be travelling in a straight line and an electric 
charge travelling along a straight line at a con- 
stant velocity v is strictly forbidden from radiat- 
ing. Instead the time-varying electric field gener- 
ated by the probe, E(o), b) must be short-ranged 
and evanescent (see Jackson's Eq. (13,29-30) 
[20]). The decay length of the evanescent field at 
frequency o) for an electron with velocity v can 
also be deduced on dimensional grounds to be 
bma x = v//o) since the only relevant physical pa- 
rameters are v and o). This is not surprisingly the 
same as the bm~ x obtained from Bohr's adiabatic 
argument. In fact the modified Bessel functions 
K 0 and K 1 in Eqs. (8) or (9) result from having 
effectively calculated the components of the 
dipole field ED(W , b) parallel and perpendicular 
to the probe. (For instance the electric field per- 
pendicular to a swift electron travelling in a 
straight line is 

E± (o), b) = e / b v ~ [ ( b / b m ~ ) K l ( b / b m a x )  ] 

Of. e-b/bmzx 

[20]. As a reality check bmax( = v/o)) ~ oc as o) ~ 0 
so the static field E±(0 ,  b) at 1 /b  which is long- 
ranged as expected.) 

The implications of the dimensional argument 
are twofold. Firstly, the inelastic interaction of  the 
swift electron with the specimen is inherently short- 
ranged. Secondly, the behaviour of the scattering 
at large distances is dominated by the kinematics 
of the scattering (through bma x and hence the 
energy loss) rather than any special property of 
the specimen. 

Returning to Eq. (6), we now see it has the 
same functional form as that found by Ritchie 
and Howie [2] where the incident probe intensity 
is convolved with the inelastic response from a 
classical electron to form the final image. Substi- 
tuting (B.10) into (6) we find for scattering from a 
dipole: 

eD( b, E) - fi~ Ry 
,3.3.2 Eo l a (b )  12 

® [JK°(b/bma ) z'il2 

+lKl(b/bma )Xf 'cos (9) 

The first term, Kg(b/bm~x) , arises from excita- 
tions parallel to the swift electron's trajectory 
while the second term contains contributions from 
perpendicular excitations (i.e. transverse fields). 
The classical discussion of Eq. (1) which deduced 
the two limits of K~(b/bm~) considered only 
excitations perpendicular to the swift electron. At 
small distances the perpendicular excitations 
dominate and P(b, E) o~ 1 /b  2 while at large dis- 
tances the parallel and perpendicular compo- 
nents are comparable and both decay similarly so 
P(b, E)oc e x p ( - 2 b / b m ~ ) .  The crossover occurs 
at Bohr's adiabatic limit bma x. Notice that for any 
multipole approximation the spatial dependence 
is determined only by the energy loss (through 
bma x) and not by the matrix elements zi'~= 
(q~f] z"  [ q~i)- Once a multipole approximation has 
been made, the matrix elements determine only 
the overall intensity and it is the multipole elec- 
tric field that decides the spatial dependence as 
would be expected from correspondence with the 
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classical argument. The exponential decay at large 
distances is more general than the multipole ap- 
proximation as it relies only on the effective pho- 
ton field being evanescent. 

3.2. Coherent imaging with a small detector on axis 

For a small collector aperture, Eq. (4) becomes 

2  0 Jl(k 0 I o - p '  I) 
D ( p - p ' )  = k ~ o l p _ p ,  I ---,~rflg, 

(lO) 

which allows an unrestricted integral over p and 
p' so the coherence volume is effectively the 
entire specimen. Using Eq. (B.9) for w(p, p', E) 
and Eq. (10) for D(p -p ' )  Eq. (3) to be rewritten 
as 

PD( b, E) 

- 2 e 0  l a ( b )  ® [Ko(koOOElzfi 

d - i g l ( k o p O E ) X  fi cos T][  2 (11) 

provided kop >> 1. The resultant image is coher- 
ent as the probe wave function, rather than the 
probe intensity, has been convolved with the 
transmission function and contrast reversals are 
possible for defocused probes or when additional 
elastic scattering is considered. The scattering 
probabilities calculated throughout this paper 
consider the inelastic scattering only and ignore 
the possibility of plural scattering. However, as 
the elastic scattering cross section is larger than 
the inelastic one, it cannot be ignored. If we 
consider only a single inelastic scattering event, 
then the incident unscattered beam can be fil- 
tered out and no phase contrast image can be 
formed. When even single elastic scattering is 
allowed, then interference between the elastically 
+ inelastically scattered beam and the inelastic 
only beam will give rise to a phase contrast im- 
age. The contrast of the elastic image will be 
preserved in the inelastic image, provided the 
inelastic scattering angle is small enough that it 
can still be thought of as the analog of the unscat- 
tered beam for elastic scattering [24]. 

3.3. Limits of the semiclassical approximation 

The semMassical forms given above must fail 
at small distances as the scattering probability 
does not become infinite. (Classically we know 
the energy loss of Eqs. (1) or (2) cannot exceed 
that of the incident electron and a number of 
approximations we have made no longer apply.) 
The dipole approximation (or any multipole ex- 
pansion) assumes the probe electron is at an 
impact parameter  much larger than the length of 
the dipole and this is usually taken as the cut off 
length to avoid the divergence in the resulting 
cross section [22]. The validity of the dipole ap- 
proximation is discussed at the end of Appendix 
B. A more serious source of error, as will be seen 
when considering the small detector case, is that 
of treating the electron as a classical point charge. 
To recover the classical behavior in the present 
work we had to assume kop >> 1 in Eq. (B.7) and 
use the integral of Eq. (B.8) to obtain the modi- 
fied Bessel function. Integrating x = kopa to in- 
finity can only be done for distances greater than 
the wavelengths contained in the electron 
wavepacket. At the origin, instead of a divergence 
we find 

Lim w(p,  p', E) 
p,p'---~O 

- ,og [ 1 + [zf i l  2, ( 1 2 )  

so the parallel component has tended to a con- 
stant value while the perpendicular contribution 
has vanished, even though for ' l / k  o < b < bma x it 
was the dominant component.  This is essentially 
the origin of the donut-shaped response reported 
by Kohl and Rose [5] for the small collector case 
or CTEM (see also Fig. 2). To see why this donut 
shape does not also apply to the large collector it 
is useful to return to Eq. (A.17) and calculate the 
P(b, E) for an arbitrary detector geometry. 

3.4. General detector geometries 

At small distances the semiclassical approxi- 
mation breaks down and we must return to the 
most general (but messiest) form of Eq. (A.17). 
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t'~ . . . . .  Parallel 
l O S  \ ......... Perpendicular 

~ _ Total 
"~ ~ 10 -6 

\ ' . . . ~  " ' ~  10.7 ..~. "." • ....... 

a )  " - ' " -  . . . . . . .  _ "  .... _ 
10 -8 -------.s 

10 -3 
\ . . . . .  Parallel l: 
\ ......... Perpendicular [ : 

;~ 10 "4 ~ _ _  Total  ]~ 

10 -6 "--~ 
b) . . . .  ~ " - ~  . . . . . . .  .. 

0 5 10 15 20 2~ 30 35 40 
Posi t ion (A) 

Fig. 2. Spatial distribution of the probability for a 25 eV 
energy loss by a 100 keV electron beam in a STEM with 
C~ = 1.3 mm, 700 A defocus and a 10 mrad objective aperture; 
(a) for a 1.6 mrad collector aperture and (b) for a 10 mrad 
collector aperture. The dotted line shows the component of 
P(b, E) perpendicular to the optic axis while the dot-dashed 
line shows the P(b, E) along the optic axis. bm~ , is at 43 ,~ 
but the semiclassical approximation holds to within 5 A of the 
dipole where the "donut" shape appears. 

Keeping only the dipole component  of  p(K)i, f 
then P(b, E) for an arbitrary detector geometry 
is: 

P(b,  E) 

k 4 R r [ 
-- 4'n" 4 Eo f d 2 f  D ( f )  02[Ail(kozei) l 2 

[ f 2 [ A l l l 2 +  I A ± x l Z +  IA±y  12} 

+ -f (A ±xA,T + A Z xA,,) 

[ -E ly(A ± yAI; + A ~_ yAii ) 

1 

×l (koxn) 12/, (13) 

where in the small-angle approximation K =  
ko[Oe~2 + ( f  - 0)1 so 

A ±x = f d20 A(O)V(K)O x exp(ik0b -0)  (14) 

and 

All = f d20 A(O)V(K)  exp(ikob'O ). (15) 

(Note that Eqs. (13-15) are non-relativistic. The 
main relativistic correction is the "pancaking" of 
the electric field so All should be replaced by 
All/y throughout and koO E ~ ykoO E. This can 
have a large effect on angle-resolved experi- 
ments.) 

4~e2V(K) is the Fourier transform of the 
Coulomb potential, i.e. the inelastic form factor: 

4 , re  2 4~-e 2 
47re2V(K) K2 - k2(O 2+ ( f - 0 ) 2 ) "  (16) 

In general Eq. (13) must be integrated numeri- 
cally, but for the limiting case of a very small 
detector on axis (i.e. fi --* 0) 

P(b,  E)  f12 Ry 
~2 Eo [ 2 ( , )  ,0 iAt[o koza. 12 

+ ] A  ±0121 k0xfi  12], (17) 

where 

1 _ 0 
A ~ = Oo Jo °° dO e i X ( ° ) ~ J l ( i k o b O  ) (18) o 0 2 + 

and 

l foo eix(o) 1 
All0 = 00J0 dO O~+oZJo(ikobO). (19) 

Unlike the semiclassical calculation for the small 
detector (Eq. (11)), Eqs. (17)-(19) will give the 
correct spatial dependence at small distances. 
Although derived for a STEM with a small collec- 
tor, this is very similar to the CTEM result found 
in Kohl and Rose [5] (their Eq. (58)). As they 
discuss, the differences between the STEM and 
CTEM are the change in wavelength from k 0 to 
k e and the chromatic aberration in the CTEM 
will lead to an additional phase shift in x(O) 
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which can be compensated for by refocusing or 
raising the incident beam voltage by the energy 
loss AE. 

Fig. 2 shows the spatial dependence of P(b, E) 
for typical " large" and small collector apertures 
calculated using Eq. (13). The donut shape char- 
acteristic of the small (1.5 mrad) collector is lost 
when the collector is the same size or larger than 
the objective aperture. It is the A .  terms that 
give rise to the donut shape. Both A ±  and Atl 
decay as 1 / / 3  2 for large 13 (i.e. 13 > 0e, 00) so the 
contribution to P(b, E) from a small collector of 
area (A/3) 2 and placed far off axis at /3 = (/3x,/3y) 
is 

ko4(Afi) 2 Ry 

P(b ,  E) - 4 7  4 E0 

2 2 2 2] 
×[ All] [0 E I kozfi[ +/321 k0xfil a, 

(20) 

as /32 ] All] 2 >> [ A ± [ 2. This means the perpen- 
dicular component of the scattering will no longer 
drop to zero at small impact parameters (as A ±  
does) but instead tends to a large finite value of a 
form similar to Eq. (12). This reduces the height 
of the donut and as a rough rule of thumb, when 
/32 + 02 _> 02, the donut shape is washed out com- 
pletely. 

3.5. Atomic resolution with plasmons? 

If the collector is displaced far enough off axis 
so that it no longer overlaps with the objective 
aperture and /32>> 02 for all /3 then Eq. (20) 
takes on the remarkable form [25] 

R" i A/32)[o21 oZ,i12 P(  b, E )  = f o  1 ~4 

+/32 I k0xfi  I 2 ] la(b) l 2. (21)  

This is to say that the inelastic scattering is just as 
localized as the incident probe intensity, indepen- 
dent of the energy loss! (The only spatial depen- 
dence is that of the probe wave function a(b)). 
To see why this should be, recall that the denomi- 

nator of All comes from the Coulomb potential 
(Eq. (16)): 

47re 2 4 rr e 2 
47re2V(K) K2 k2(O 2 + (/3 _ 0)2) .  (22) 

This is very similar to the form factor for elastic 
scattering from a screened Coulomb potential 
where e(q, 0) is approximated by the Thomas-  
Fermi dielectric function [26]: 

1 4 ~e  2 4~re 2 

V(K)  e(q,  O) K ~ ~" O~rv + ( / 3 -  0) 2. (23) 

For most materials, the characteristic Thomas-  
Fermi scattering angle, 0 ~ ,  is comparable to the 
objective aperture cutoff at 100 kV so V(K) varies 
little in the integration over scattering angle in 
Eq. (13). Since V(K) is roughly constant, its 
Fourier transform in real space must be localized, 
i.e. on the scale of the probe wave function 
V(r) ~ 6(r) so the elastic scattering appears local- 
ized and the resolution limit for ADF imaging is 
determined only by the probe wave function [27- 
29]. 

Inelastic scattering can also be localized by 
displacing the collector so /3 >> 00. Then V(K) is 
independent  of 0 and 

4~-e 2 4~re 2 
V(K)  = 02+/32 ~ V ( r ) ~ ~ 3 ( r ) .  (24) 

Fig. 3a shows a comparison of P(b, AE = 25 
eV) for a small collector on-axis and a small 
collector displaced to almost 30 o . By displacing 
the collector, the signal has been made localized 
but weak. Effectively the Coulomb potential has 
been high-pass-filtered to form a "weak beam" 
inelastic image. The idea of displacing the collec- 
tor aperture to obtain a more localized signal has 
been used by Tafto and Krivanek [30] in diffrac- 
tion and channeling experiments. Ritchie and 
Howie [2] have estimated the extent of localiza- 
tion for the parallel component of the scattering 
for small collector displacements where the effect 
is noticeable but not quite as dramatic. From Eq. 
(21) it is clear that the parallel component decays 
as the inverse of the fourth power of the scatter- 
ing angle so the signal is very weak for a collector 
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maps formed in this way, the large momentum 
transfer will mean that the plasmons can be 
damped by single particle excitations [31], and the 
resultant lifetime broadening will lower the en- 
ergy resolution. For amorphous materials where 
the crystal momentum is not a good quantum 
number to begin with, this effect should be small. 
Strong plural scattering will limit this method to 
thin specimens and it is important to exclude any 
diffracted beams from the collector aperture as in 
conventional weak-beam imaging. 

Z 

I o A D F  
I Collector at (0,25) mr ~ ~ at (25,0) mr 

0 1 2 3 04 5 6 
Position (A) 

Fig. 3. Calculated P(b, AE = 25 eV) for (a) a point detector 
on-axis and a point detector displaced 25 mrad in a direction 
parallel to the impact parameter. (b) Displacing the collector 
off axis makes the inelastic signal as localized as the incident 
probe. Whether the collector is displaced in a direction paral- 
lel (25, 0) or perpendicular (0, 25) to the impact parameter 
makes no difference for large displacements. Conditions for a 
100 kV STEM with C s = 3.3 ram, 1100 A defocus and a 8.18 
mrad objective aperture. 

displacement sufficient to localize the inelastic 
scattering. In contrast, the perpendicular compo- 
nent of the inelastic scattering decays as the 
inverse of the second power of the scattering 
angle so a usable signal is still present. It is 
interesting to note that the elastic signal also 
decays like the parallel component of the inelas- 
tic scattering, i.e. a s  1//~ 4. So there should be a 
range of scattering angles where the perpendicu- 
lar component of the inelastic scattering should 
dominate the elastic scattering. At large enough 
scattering angles, the quadrupole scattering will 
become significant as this signal will be roughly 
independent of the scattering angle. For plasmon 

4. Experiment 

Some of the features of the inelastic scattering 
described above are quite general, especially those 
that can be recovered from the classical argu- 
ment. For instance the inelastic signal is expected 
to decay exponentially at large distances from the 
scattering target with a decay length bm~x/2. This 
is a function of the energy loss alone and is not 
determined by the nature of the excitation (classi- 
cal, quantum, single particle or collective) or the 
specimen shape. The specimen and probe shapes, 
however, are important for determining the be- 
havior of P(b, E) at small distances. For instance 
while a single dipole has a spatial dependence of 
P(b, E) c~ KZ(b/bmax) + KZ(b/bmax), summing 
the responses of a line of dipoles gives P(b, E)  cx 
Ka(2b/bma x) [17]. If  a half space is filled with 
dipoles, P(b, E) cx Ko(2b/bm~ x) [17] which varies 
as P(b, E ) c x - I n  b at small b instead of 
P(b, E)  cx 1/b  2 for an isolated dipole. (Note that 
all have the same long-range behaviour as ex- 
plained in Section 3.1). 

4.1. Measurement of the inelastic decay length 

A simple illustration of the decay of the inelas- 
tic scattering or the "dynamic screening" follows 
the experiment of Isaacson, Langmore and Rose 
[6] where the energy loss of a STEM probe is 
recorded as the probe is brought in from the 
vacuum to the edge of a thin film. Here we use a 
VG-HB501A 100 kV STEM with serial EELS 
and placed within a shielded room [32]. The 
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results for a th in  Si film covered by SiO 2 are 
shown in Fig. 4a and  for an a-C film (the suppor t  
grid for a graphi te  test specimen)  in Fig. 4b. The  
data  spans 5 orders of magn i t ude  and  is really 
only made  possible by using digital single e lec t ron  
pulse  count ing  where  the the rmal  background  
averaged less than  1 count  for the 20 ms dwell 
t ime used. Each  energy loss l ine scan is recorded 
s imul taneous ly  with the A D F  signal [33] so the 
edge of the spec imen could be de te rmined .  The  
magni f ica t ion  was cal ibra ted using the silicon 
( l I D  fringes for Fig. 4a and  the graphi te  (0002) 
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Fig. 4. Experimentally measured line scans of inelastic scatter- 
ing intensity, P(b, E), as a function of distance from the edge 
of the specimen. (a) P(b, E) for a thin SiO 2 layer at the end 
of a silicon wedge. (b) P(b, E) for a thin (30 A) a-C support 
grid showing pronounced surface plasmons at 9, 14 eV. Notice 
that the bulk plasmon at 22 eV has a reduced intensity at the 
edge of the specimen where oscillator strength has been 
transferred to the surface modes. Both data sets recorded on 
a VG-HB501A with C s = 3.3 mm, 50 /~m objective aperture 
and 10 mrad collector aperture. 

. . . . .  t . . . . . . . .  i 

......... b =1252.4*AEA (-1.0064)i 

o< 

,~ 100 ... ] 

10 t q 
i i i ~ i pl  14 , i 

10 100 
Energy Loss AE (eV) 

Fig. 5. Measured inelastic decay length bma x for different 
energy losses. For b >> bma x we expect P(b, E) c~ 
exp(-2b/bmax) .  This is evident in Fig. 4 where P(b, E) for a 
given E follows a straight line on a log-linear scale at large 
distances. Thus bma x can be measured from the slope of 
P(b, E) versus b for a fixed energy loss E. Here measured 
bma x values (from the data of Fig. 4a) are plotted against the 
energy loss E. The solid diagonal line is the theoretical (and 
relativistic) bmax = 7v/o~ = 1293/E and the dashed line is the 
least-squares fit to the experimental data (R is the linear 
correlation coefficient). The two are within experimental er- 
ror. 

fringes for Fig. 4b. At  large dis tances from the 
spec imen the signal was found  to decay as 
e x p ( - 2 b / b m a  x) to within the 3% exper imenta l  
error  (Fig. 5.) The  ma in  sources of systematic 
error  are the residual  uncer ta in t ies  in the posi- 
t ion and  energy scales. 

Compar ing  the theoret ical  a n d m e a s u r e d  spa- 
tial dependences  of P(b, E )  for small distances is 
more  difficult as we really do not  know what the 
spec imen  shape is. O n e  possibility is to exploit 
the incoheren t  imaging condi t ions  ob ta ined  by 
using a large collector (Eq. (8)). The  convolut ion  
of the spec imen with the probe  shape can be 
de t e rmined  by s imul taneous ly  recording the A D F  
signal with the inelastic signal. The  expected in- 
elastic signal can then  be mode led  by convolving 
the A D F  signal with the inelastic response  of a 
single dipole WD(p, p, E)  (calculated with a fi- 
ni te  cutoff  angle). Fig. 6 shows the compar ison  of 
a p lasmon l ine scan across the edge of a th in  
ca rbon  film with the expected inelast ic  signal. 
The  only free pa rame te r  was the overall intensi ty  
as bo th  the energy loss and  horizontal  scale are 
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d e t e r m i n e d  by  the  e x p e r i m e n t a l  condi t ions .  Over -  
all the  a g r e e m e n t  is good  and  the  la rges t  d i sc rep-  
ancy is at  abou t  20 A in to  the  spec imen  where  
the  m o d e l  has  o v e r e s t i m a t e d  the  bu lk  p l a s m o n  
intensi ty .  This  is expec ted  as the  bu lk  p l a s m o n  is 
s u p p r e s s e d  at  the  sur face  bu t  the  convolu t ion  
impl ies  tha t  the  bu lk  p l a s m o n  re sponse  is uni-  
fo rm t h r o u g h o u t  the  spec imen .  

4.2. "Weak beam" inelastic imaging with a dis- 
placed collector 

T h e  ca lcu la t ions  of  Sec t ion  3.4 suggest  tha t  
when  the  co l lec to r  is d i sp l aced  off  axis so it no 
longe r  over l aps  with the  objec t ive  a p e r t u r e  or  any  
of  the  Bragg  beams ,  the  ine las t ic  sca t t e r ing  should  
be  just  as loca l ized  as the  p r o b e  wave  funct ion .  
To tes t  this  i dea  we mus t  min imize  the  effects  of  
p lu ra l  sca t t e r ing  and  mul t ip l e  e las t ic  sca t t e r ing  
which will d e g r a d e  the  spa t ia l  reso lu t ion .  T h e  
mul t ip l e  e las t ic  sca t t e r ing  can  be  min imized  by 
us ing an a m o r p h o u s  s p e c i m e n  tha t  is th in  enough  
tha t  only  k inema t i c  sca t te r ing  n e e d  be  cons id-  
e red .  T h e  ra t io  of  ine las t ic  to  e las t ic  sca t te r ing ,  
(oJo'e), can b e  e n h a n c e d  by  work ing  with  l ight  
e l e m e n t s  s ince (o-i/(r  e )  is inverse ly  p r o p o r t i o n a l  
to the  a tomic  n u m b e r  [27]: F o r  ca rbon  (~ri/o- e )  ~ 3 
[34]. 

Fig.  7 shows l ine scans r e c o r d e d  in the  ca rbon  
p l a s m o n  loss (P(b, A E  = 25 eV))  for  bo th  an 
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Fig. 6. Comparison of the experimentally measured carbon 
plasmon loss at 25 eV with the theoretical P(b, AE = 25 eV) 
obtained by convolving ,w(p, p', E) with the ADF signal (see 
text), Data recorded on a VG-HB50IA with C s = 3.3 mm, 50 
/zm objective aperture and !0 mrad collector aperture. 
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Fig. 7. The effect of displacing the collector aperture to form 
a "weak beam" inelastic image: (a) shows a measured line 
scan recorded in the carbon plasmon loss for a thin ( < 30 A) 
carbon film with a 10 mrad collector centered on the optic 
axis and the simultaneously recorded ADF signal; (b) the 
collector is displaced 25 mrad off axis using the Grigson coils 
to form the weak beam image. The measured plasmon line 
scan with the displaced collector is as localized as its simulta- 
neously recorded ADF signal, i.e. the resolution of the weak 
beam inelastic image is determined by the probe shape alone. 
(Data recorded on a VG-HB501A with C s = 3.3 ram, 50 ~m 
objective aperture and 10 mrad collector aperture.) 

on-axis  and  a d i sp l aced  co l lec to r  ape r tu re .  T h e  
spec imen  is the  edge  of  a ca rbon  suppo r t  grid,  
less than  30 A thick. I t  is c lea r  f rom Fig. 7b that  
the  ine las t ic  " w e a k  b e a m "  image  with the  dis- 
p l aced  co l lec to r  has  the  same  spat ia l  reso lu t ion  
as the  s imul taneous ly  r e c o r d e d  A D F  image.  The  
only d i f fe rence  b e t w e e n  the  w e a k - b e a m  p lasmon  
scan and  the A D F  image  is that  the  p l a smon  
in tens i ty  is less at the  sur face  of  the  film. This  is a 
s t rong ind ica t ion  tha t  the  ma in  con t r ibu t ion  to 
the  w e a k - b e a m  image  is f rom the  bulk  p la smon  
as this  has  a r e d u c e d  in tens i ty  at  the  surface.  

5. D i scuss ion  

T h e  theory  d iscussed  in this p a p e r  has  so far  
only  c ons ide r e d  single inelas t ic  sca t te r ing  and  the  
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experiments have been chosen to satisfy that con- 
dition as closely as possible. In this regime, we 
found quantitative agreement between theory and 
experiment. Under  more typical conditions, mul- 
tiple scattering and dielectric screening in the 
bulk must also be considered. 

For  instance would the spatial dependence of 
the scattering from a dipole be changed if a slab 
of some conducting material were placed be- 
tween the dipole and the probe? Dielectric 
screening can only improve the spatial resolution 
of an inelastic image for very low energy losses 
(typically quarter to a tenth of the bulk plasmon 
loss). In the Landau theory of a charged Fermi 
liquid, the static screening length, As, is given 
exactly in the long-wavelength limit as A S = s/top 
[31] where s is the macroscopic sound velocity 
and top is the classical plasma frequency. From 
the plasmon dispersion relationship to2= tozp + 
s2q 2 we can deduce that the dielectric screening 
length for excitations below the plasma frequency 
is A = s~ ~ -  o) 2 and that there is no dielectric 

screening for energy losses at and above the 
plasmon frequency. (A similar result could be 
obtained by screening a test charge with the 
dielectric response of a medium that satisfies the 
hydrodynamic limit at long wavelengths.) Conse- 
quently a bulk plasmon cannot screen itself. Nor 
would we expect the spatial variation of an en- 
ergy loss due to say a dipole embedded in this 
medium to be very different from its spatial varia- 
tion in free space if the energy loss is greater than 
that of plasma frequency. This is simply a realiza- 
tion that the system can respond above its reso- 
nant frequency. For  instance the measured EELS 
signal due to a Si L2, 3 edge at 99 eV from a 
silicon impurity in aluminium would decay as 
exp(-b/bma x) at large distances from the impu- 
rity just as if the impurity were in vacuo. How- 
ever, the signal from say a valence excitation of 
the impurity silicon particle below the resonant 
frequency of the bulk aluminium might be ex- 
pected to fall off more rapidly than it would in 
free space. 

The effect of multiple elastic scattering on the 
inelastic image recorded with a small on axis 
collector (or a CTEM with a small condenser 
angle) has been discussed in Section 3.2, The 

main effect will be a preservation of diffraction 
contrast effects (such as thickness fringes) which 
will have to be deconvolved in order to isolate the 
inelastic scattering. The situation is more hopeful 
for imaging with a large collector aperture. If the 
detector is large enough to collect almost all the 
inelastically scattered electrons the resulting im- 
age is incoherent. In many respects this image is 
very similar to the ADF signal. To see this, con- 
sider the elastic scattering from a single Thomas-  
Fermi atom. Using the elastic scattering form 
factor of Eq. (23) in Eq. (3) and taking the limit 
of a large detector (with the unscattered beam 
removed by having a small hole in the center) the 
probability of elastic scattering is 

Pc(b) c~ ] a (b )  [ 2 ® [Ko(b/ATF)Zii [2, (25) 

while that for single inelastic scattering with a 
similar (but energy filtering) detector is given by 
Eq. (9): 

PD(b, E) ct [ a (b )  12 ® [I Ko(b/bmax)Zfi 12 

+[Kl(b/bm~x)Xfi cos 7 [2 ] .  (26) 

In other words, for single scattering, the parallel 
component of inelastic scattering has the same 
spatial dependence as elastic scattering from a 
Thomas-Fermi  atom. Provided all the scattered 
electrons are collected, the multiple scattering 
corrections for both Eqs. (25) and (26) should be 
very similar [35] and much of our understanding 
of probe channeling in ADF can also be applied 
here. Effects associated with the depth of pene- 
tration due to channeling [36], development of 
"forbidden" periodicities [37] and strain field 
scattering [38,39,37] are all likely to arise and may 
complicate interpretation. 

Some typical measures of spatial resolution for 
the inelastic scattering are shown in Fig. 8. These 
are based on the full quantum mechanical calcu- 
lation of Eq. (13). The full width at half maximum 
(FWHM) is only slightly worse than that of the 
incident probe and not particularly sensitive to 
the energy loss. The main effect of the inelastic 
delocalization is to add slowly decaying tails to 
the point spread function which become progres- 
sively worse at lower energies. This is reflected in 
the rapid broadening of the disk containing 80% 
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Fig. 8. Measures of spatial resolution for a 100 kV STEM at 
1100 .~ defocus with C s =3.3 ram, a 8.18 mrad objective 
aperture and a 10 mrad collector aperture. The full width at 
half maximum (FWHM), full width at tenth maximum and the 
radius of the disk containing 80% of the scattered electrons 
are shown for P(b, E) from a single dipole, calculated using 
Eq. (13). 

of  the scattered electrons. At  large energy losses 
(where bma x is less than the probe size) the reso- 
lution is determined only by the incident probe 
size. It  may seem surprising that the F W H M  and 
the F W T M  (full width at tenth of the maximum) 
are also constant for small energy losses. How- 
ever, this is expected from the semiclassical 
model. I f  the probe  size is much smaller than 
bm~ x then for b <bm~, P(b, E) ct 1/b 2. As a 
power-law decay has no characteristic length 
scale, measures  such as the FWHM, F W T M  and 
the rms impact pa ramete r  must be independent  
of the energy loss. It  is only the breakdown of the 
semiclassical approximation at the impact param- 
eter  b m i  n = 1 A (which is determined by the probe  
size) that prevents P(b, E) from diverging and 
determines the scale at small distances. Only 
when bm~ x < nb~n and P(b, E) begins to decay 
exponentially will the full width at n th  maximum 
become energy dependent  which occurs at ~ 100 
eV in Fig. 8. 

6. C o n c l u s i o n s  

How delocalized is inelastic scattering? Fig. 1 
showed that under  typical imaging conditions, 

even plasmon maps can have subnanometer  spa- 
t i a l  resolution while Fig. 4 showed that inelastic 
signal also has an exponentially decaying charac- 
ter at large distances. The lesson is tha t  for 
analytical work where the resolution limit might 
be taken as the full width at tenth maximum, the 
signal is quite delocalized. However,  for imaging, 
where the s ignal /noise  is worse, and the full 
width at half maximum is a bet ter  criterion, then 
the inelastic scattering is almost always localized 
to within 5 A. 

Classically, the energy loss of  a fast electron is 
a function of the impact parameter .  Quantum 
mechanically, the energy loss is independent  of 
the impact parameter ,  but the probability of  the 
occurrence of that loss is not and using the corre- 
spondence principle it must vary as P(b, E i ) . E  i 
= AEclassica~(b). Bohr's adiabatic criterion bma x = 
v / w  gives the experimentally measured decay 
length for inelastic scattering and plays the same 
role as the dielectric screening length does in 
elastic scattering from a T h o m a s - F e r m i  atom. In 
fact the parallel component  of the inelastic scat- 
tering from a dipole has the  same spatial depen- 
dence as elastic scattering from a T h o m a s - F e r m i  
atom. 

The role of the detector in inelastic scattering 
is the same as in elastic scattering - a small 
collector leads to a coherent  image (an axial 
dark-field signal) while a using a large collector 
results in incoherent imaging. Ideally, 0 c ~ 300 
for incoherent imaging, but such a large collec- 
tion angle often degrades the energy resolution of 
the spectrometer.  However,  provided the collec- 
tion angle is greater  than the/objective angle, the 
imaging conditions are closer to incoherent than 
coherent  (i.e. the br ight-fMd signal should re- 
semble the complement  of the A D F  signal). 

Displacing the collector aperture t o  form an 
inelastic "weak  beam"  image makes the resolu- 
tion of an energy loss image comparable  to that 
of the annular dark-field image. The delocaliza- 
tion is more pronounced at higher beam energies 
so the "weak  beam"  imaging should prove useful 
for obtaining subnanometer  resolution plasmon 
maps in 200 and 300 kV electron microscopes. 

Finally it should be noted that the spatial 
localization of the inelastic scattering (as a result 
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of the exponential decay at large distances) de- 
pends only on the energy loss measured, rather 
than a detailed knowledge of the nature of the 
material. This suggests it may be possible to re- 
move the "blurring" of an inelastic image by 
deconvolution using Eq. (13) as the impulse re- 
sponse of the system. This assumes the specimen 
is thin, dipole scattering dominates and a suffi- 
ciently good signal-to-noise ratio can be acheived 
at the higher spatial frequencies of the probe. In 
practise, this last condition is probably the limit- 
ing one [44]. 
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Appendix A. Quantum mechanical derivation of 
e ( b ,  E )  

We start by calculating the transition rate for 
the fast electron wavepacket to excite the target 
system from its ground state to some excited state 
and for which the fast electron loses an energy 
AE. This is given by Fermi's golden rule 

2~- 
F i ~  f -- - ~ -  I (Of I V I ~ i )  126(Ei  - Ef - A E ) .  

(A.1) 

The initial state [ gt i) = t4~i) [ ~Op) is taken as the 
product  of the ground state wave function of the 
target, 1 4~i), and the probe wave •function I q~p). 
Exchange between the target electrons and the 
probe electron can be ignored as there is little 
overlap in momentum space between the bound 
and incident electrons [40]. Usually the probe is 

assumed to be sufficiently large that it can be 
approximated by a single plane wave. This lead to 
Bethe's theory of inelastic scattering [16] which is 
reviewed in Ref. [41]. For  a probe of atomic 
dimensions we must describe the wavepacket 
(centered around impact parameter  b) by a co- 
herent  superposition of plane waves: 

1 
( r  ]~v> (27r)Zv/L_ f d k A ( k )  e ik(r-b), 

(A.2a) 

and for single scattering we can consider the final 
state to be a plane wave: 

e- ik f . r  

(q~ f[r )  L3/2 , (A.2b) 

where the wave functions have been normalized 
in a box of length L. 

The interaction Hamiltonian is the Coulomb 
potential 

z e 2 Z 
V ( r )  = - E - -  + - -  (A.3) 

j=l r - r y l  [ r - r N J '  

where ry are the coordinates of the bound elec- 
trons and r N is the position of the atomic nucleus 
(if we are considering scattering from a single 
atom). As we will be interested in transmitted 
rather than backscattered electrons we can ignore 
the nuclear contribution (2nd term) as the energy 
transfer is then small. We can then write the 
matrix element as 

- 1  
<0flgl j>-- (2 )2L2 fdkA(k) e - i k ! f  dr  

Z e2 
x I r - q l  ¢ e - i K " '  

(A.4) 

where the scattering vector K = kf - k. The inte- 
gration over r can be done using Bethe's integral 
[161 

1 4~- 
f d r - - e - i K ' r  = eiK-rj (A.5) 

[ r - r j l  . K a " J 



D.A. Muller, J. Silcox / Ultramicroscopy 59 (1995) 195-213 209 

The matrix element can then be rewritten as 

- 1  
(~bf[V]~O i) = (2~r)ZLZ f d k A ( k )  A(k )  e -ik'b 

× ~  f e - ix 'r j  q~ . (A.6) 

It is ten customary at this point to introduce the 
Fourier transform of the particle density 

Z 
p(K) = ~ e - i" ' r j ,  ( a . 7 )  

j=l  

so the matrix elements of the density fluctuations 
become 

The density matrix is useful for treating single 
particle and many body excitations on an equal 
footing. Later  it will become necessary to expand 
the density matrix in powers of K in order to 
study the specific forms of P(b, E). When we do 
so, the single particle excitations will provide 
simple and concrete examples. 
We are now in a position to calculate P(b, E). 
First we use (A.8) and (A.6) in (A.1) to obtain the 
transition rate to all final states such that kf lies 
within the detector  

2 ~  ( e 2 )  2 

r=-h- E 

x f dk, dk' A (k )A*(k ' ) e  -i(k-k')b 

t + p( K)i,f p( K )i,f 
× K2 ~ - T T - B ( E i - E ~ -  AE)  

e 4 

- 4 j 4 h L  

x f dkf, dk, dk' D ( k f ) A ( k ) A * ( k ' )  

× e-i(k-k ')b 

r + 
p ( K ) i , f  p(K )i,f ($ .E  E 

)< g ~ ~ ( i - -  f - A E ) .  ( A . 9 )  

The second line follows from introducing a detec- 
tor function D(k) that is 1 inside the collector 
aperture and 0 outside, and replacing the sum 
over final states by an integral F.kf~fdk~/ 
(2~-/L) 3. If the wavepacket travels at group ve- 
locity v = hko/m then the probability that an 
excitation occurs is the transition rate (A.9) mul- 
tiplied by the interaction time L/u  so 

1 t ,)f P ( b ,  E )  = ~ [ ~ 0  dkf ,  dk,  dk'  

× D ( k O A ( k ) A *  (k ' )  e 

p(K')3 
× K ~ ~-~'6(Ei-E,-AE), 

(A.10) 

where Ry = e2/2ao is the Rydberg energy and 
a o = h2/me 2 is the Bohr radius. 

So far the expression for P(b, E) is exact 
(within the first Born approximation). To proceed 
further we assume the energy loss A E  << E0: and 
make the usual small angle approximations [5]. 
This is done by writing the scattering vectors in a 
Taylor series of the scattering angles and neglect- 
ing terms of second order or higher. This has the 
effect of converting the Ewald spheres to planes 
parallel to the optic axis (see Fig. 9). We can then 
write 

K=ko[OE  + ( t3 -O)] ,  : 
K'= ko[ Oe2 + (fl - 0 ' ) ] ,  (A.11) 

where the perpendicular components of k 0 and 
k r are k00 and k0fl, respectively. The z-compo- 
nent of the scattering vectors K, K', is the koO E 
where 0 E is fixed by integrating over the z-com- 
ponent  of kf  in (A.10). This follows from [k~l -- 
I k 0 1 ( 1 -  Oe) so 

h 2 h 2 
A E =  2m ( k g - k 2 ) =  ~m (2kgOe + 0(02)) 

.~ 2EoO e. (A.12) 

The delta function in (A.10) which is required 
by conservation of energy becomes 

1 
~ ( E i _ E f _  AN) =_~o~(OE Ei_--_ Ef] 

2 E  0 1" 
(A.13) 
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I i  Optic 
I Axis 

ko~'l l~---'t --,i ~ Objective 
~ Aperture 

Collecto [~r~ 
Aperffire 

arid 
Spectrometer 

Entrance 
a) 

~ pOabj~t 

b) 

I Optic I Optic 
IAxis IAxis 

e) 

Fig. 9. (a) Scattering geometry in a STEM. (b) Energy 
conservation fixes the initial and final wavevectors to lie 
on spheres of radius ko=~(2m/h2)Eo and Ikfl 
=~(2m/h2 )Eo( i -AE/Eo) ,  respectively. (c)The small 
angle approximations changes these spheres into two planes, 
koAE/2E o apart. The parallel and perpendicular compo- 
nents of momentum transfer, K, are also shown. 

We now use A E as a shorthand for E i - E l .  The 
integration over the delta function will set 0 e = 
A E / 2 E  o 

The probe wave function of Eq. (A.2) becomes 

eik0z 
a ( r - b )  = 2~.----7 fj d2(ko 0) A(O) eikoO'(o-b), 

(A.14) 

where r = (Px, Py, z), 

= [ C e ix(°) for 101 _< 00, 
A ( 0 )  (A.15) / 0 otherwise, 

with C = 1/(koOoV'-4). 

x(O) = ko((Cs/4)O 4 - (Af/2)O 2) (A.16) 

describes the phase shift due to the objective 
lens. C s is the coefficient of spherical aberration 
and A f  is the defocus. The constant in A(O), is 
introduced so the integrated probe intensity in 
real space is normalized to one. Substitution of 
(A.11)-(A.16) into (1.10) gives a result similar to 
that obtained by Kohl and Rose [5]: 

e(b ,  E) 

47r4k4 ( Ry d20' - f d2/3 d20 D(/3)A(O) 

e_iko(O_o,), b o(K)i ,f  p( Kt)i+, 
XA* (0') K2 g '  2 , 

(A.17) 

where D(/3) is 0 outside the detector and 1 for 
/3 </30- The multiplication of the density matrices 
p(K) and p(K') leads to cross-terms in K.  K'  so 
this equation is not in general separable into 
independent  integrals over 0 and 0'. Kohl and 
Rose [5] introduce a mixed dynamic form factor 
to make the coherent  nature of this integration 
explicit. 

Eq. (A.17) has closed forms for 2 special cases, 
a STEM with a very large detector and CTEM or 
STEM with a point BF detector which are best 
illustrated by expressing Eq. (A.17) in terms of 
real space variables: 

A(O) = f a ( p )  e iko°° d20, (1 .18)  

t + 
p(g) i , f  p ( K  )i,f 

K 2 K ,2 

= f w ( o ,  p', E) e -i~Kp-rp') d2o dip '. 

(A.19) 

Here  ~ is the perpendicular component of r, not 
to be confused with the density matrix p(K). 
w(p, p', E) has been called the "cross spectral 
object transparency" by Rose [21] and is defined 
by the inverse Fourier transform of Eq. (A.19): 

( l ~ ) 2 f j  p(K)i,f 2 K '2 w(p,  p', E) = 

x e i (Kp-g 'd )  d2K dEK '. (A.20) 
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Specific forms of w(p, p', E) are discussed in 
Appendix B. 

Substituting Eqs. (A.18) and (A.19) in (A.17) 
and using the integral representation of the delta 
function 

4,rr 2 
f d0 e -ik°°'(p-p') - 6 ( p - p ' )  (A.21) 

eliminates K and 0 so P(b, E) can be expressed 
in terms of real spaces variables alone: 

e ( b ,  E) 

- 4 R y f a ( p - b ) a * ( p ' - b ) w ( p ,  p', E) 
Eo 

× D ( o - p ' )  d2p d2p ', (A.22) 

which is the desired result for Eq. (3). 
If we then assume the collector aperture is 

circular and centered on the optic axis then the 
integral over fl can also be performed: 

D ( o - o ' )  = fD(t ) e -ik°t3"(°-°') d2fl 

2¢r132jl( kofio I p - p' [) 
= (A.23) 

k 0 f l o l p - p ' l  

The scattering probability can then be expressed 
more compactly as 

P(b,  E) 

4Ry 
- -~o J a ( p - b ) a * ( p ' - b ) w ( p ,  p', E) 

2rrfl2jl( koflo I p - p' l) 
× d2p ' 

ko~o l p - p' l 
(A,24) 

A p p e n d i x  B. w ( p ,  p', E )  for  a d i p o l e  e x c i t a t i o n  

The "cross spectral object transparency" of 
Rose [21] w(p, p', E) is essentially the impulse 
response of the system to the probe wavepacket 
and plays a similar role to the transmission func- 

tion of classical optics [42]. From its definition 
(Eq. (8)) it can also be thought of as a density 
cross correlation function in real space: 

w ( . .  p..  E) = 
p(K')i+,f 

27r ] J K z K '2 

Xe i(K'p-K''#) d2K d2K '. (B.1) 

Usually a thermal average over the density matri- 
ces is taken but for simplicity we ignore such 
effects and assume that the system is initially 
prepared in one specific state I ~bi>. 

To consider a specific form of w we expand 
the density matrices p(K)i, f in powers of (K.rj). 

p ( K ) f , i  = ( ~ f  ] ~oi) - i(q~f I g ' r j  I q~i> 

- <q~f I (K-r i )Z  ] q~i> + . . . .  (B.2) 

The leading term <q~e]~0i> = 0 as the initial and 
final states are orthogonal. In general, if (K- rj) is 
small then it is only necessary to consider the 
dipole contribution. However, the upper limit of 
the integral over K in (B.1) is the maximum 
momentum transferred to the system which could 
be as much as k 0. The probability of such an 
event occurring is very small and almost all the 
intensity is contained within the Bethe ridge [40]. 
The cutoff angle at the Bethe ridge is 0 c = 2 ~ E .  
For a typical low loss excitation 0c --~ 14 mrad so 
the small-angle approximation of Eq. (2) is still 
accurate but the momentum transfer at the cutoff 
angle would be k c = 2.4 .&-i so the non-dipole 
terms are not negligible. Spatially these higher- 
order terms dominate only at very small dis- 
tances. Their  behavior can be generalized from 
the calculated dipole contribution. Eq. (B.2) can 
be simplified by making the small-angle approxi- 
mation and choosing the x-axis to lie along the 
dipole 

p(K)f , i  = - ik 0 [OEZif + a cos(~b) xif ] 

2 2 2 -- ko[OEZif  + 2 0 E a  COS(~b)ZifXif 

+ . . . .  ( B . 3 )  

where 4) is the angle between the x-axis and the 
component of K perpendicular to the optic axis 
which is k0a  = ko( fl - 0 ) .  The matrix elements 
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are abbreviated as zi} = <~fl z" I Pi)- Keeping 
only the dipole contribution (the first term in 
(B.3)) and substituting into (B.1) we get 

w(o, o', E) 
k )2 [OEZfi-}-Ol COS ~Xfi ] 

: f 07+7  
[OEzf~ + o~' cos ,~!xf~] 

x 
0 2 2 I- a '2 

X e ik°(a'o-W'°')  d2a d2a  ', (B.4) 

where Y is the angle between p and the x-axis so 
a.p=o~p cos (T-~b) .  Notice that the integral 
over the pr imed variables is separable and the 
complex conjugate of the integral over the un- 
pr imed variables. Rewriting cos q5 as a sum of 
exponentials and making a change of variable 
f rom & to ~ / = y -  4~ we find 

w(o, p', E) 

Ol 2rr -( k°12f T fo d,  

>( [ zfiOE eikoao cos n 4- Xfiol(eikoap cos n-,v+ln 

"a-eik°ao c°sn+i~ ' - i") /2]  X C . C . ( p ' ) .  (B.5)  

The inner integral can be evaluated since the 
Bessel functions Jm can be wr i t t en  as [43] 

1 e2rr 
Jm(X) = 2rrW ]o dr/ e 'x cos n-ira , ,  (B.6) 

so the first te rm of the inner integral will be 
proportional  to J0 while the second will be pro- 
portional to iJ ~ and - i J_ ~. Since J~ - - J 21 we 
find 

w(o, p', E) 

kg [ 
2~ f da znO E Oz + c~2Jo( kopa ) 

+ixf i  cos y ~ J l ( k o P a )  × C . C . ( p ' ) .  

(B.7) 

In the limit kop --* ~ Eq. (B.7) has a closed form. 

This can be seen by making a change of variable 
to x = kopa and using the integral [43] 

X v+l 

fo x-Z +a 2J~(bx) dx=aVK~(ab)' (B.8) 

which gives the dipole form of WD(p, p', E): 

WD(p, p', ~)  

(koOE) 2 
- 

+ iKl( kopOE)xfi cos T] [ Ko( kop'OE)zf~ 

-iK,(kop'OE)x~ cos y ' ] .  (B.9) 

When P(b, E) is calculated by integrating over p 
and p' (such as in Eq. (9)) the symmetry between 
the integral over p and that over p' means cross 
terms between the perpendicular  and parallel 
components  of the dipole excitation in (B.9) will 
cancel and the only non-zero terms will be 

wD(p, t,', E) 

_ (koOE) 2 [Ko(kopOE)Ko(kop, Oe) lzf i 12 
2~ 

+Kl(k0O0E)  Kl (k0p '0E)  

×cos  y cos y'[xfi [2]. (B.10) 

Returning to Eq. (B.3), the quadrupole contribu- 
tion will be 

wo(o,  p', E) 

(k00 < f - 2~r tK°(k°POE)K°(k°p'OE)lzf2il2 

+K2(kopOe)K2(kop'OE) cos2 7 c os2 Y' 

× bvxi 212 + 2K1(kopOE) Kl (k0p '0E)  

)<cos  y cos y'lzifxif[2]. (B. I1)  

We are now in a position to examine the 
validity of the dipole  approximation used in Eqs. 
(7)-(11) of the main text. The dipole approxima- 
tion assumes a small momen tum transfer and 
hence a small scattering angle. However, in trans- 
forming to real space, we integrate over all scat- 
tering angles. As long as the contribution from 
large scattering angles is small, the dipole term 
will dominate.  For a valence-shell excitation, the 
matrix elements will b e  of the order of  (a~) 2 for 
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the n t h  order  mul t ipole .  As all the modif ied  
Bessel funct ions  decay exponent ia l ly  at large 
enough  distances,  the rat io of quadrupo le  to 
dipole scat ter ing for b >> bma ~ will be  

W Q ( R , R , E )  ( a  ° )2. (B.12) 
WD(O, P, E )  = (k°a°OE)2= ~m~ 

Only  above a few keV energy loss (i.e. when  
A E  = E )  does the quadrupo le  scat ter ing become 
comparab le  to the dipole scattering. 

A t  small  dis tances Kn(X) ~ 1 /x  n except for K 0 
which diverges logari thmical ly so to leading  or- 
der, the rat io of quadrupo le  to dipole scat ter ing 

for b >> bma x will be  

wD(o, o, E) 

The  quadrupo le  scat ter ing is only significant  for 
impact  pa ramete r s  of the same size as the dipole 
matr ix  e l ements  which are typically of subatomic  
dimensions .  The  quad rupo le  scat ter ing n e e d  be 
cons idered  at all only if these spatial  f requencies  
are t r ansmi t t ed  by the microscope.  For  an on-axis 
detector ,  the dipole  approximat ion  is good below 
a few keV energy loss and  at all bu t  the closest 
distances.  This should be expected as the total  
cross sect ion calcula ted by in tegra t ing  the impact  
p a r a m e t e r  based  cross sect ion over all space gives 
the same result  as the Bethe  formula.  
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