2D Fourier Transform

Definition

$F(u, v)=F\{f(x, y)\}=\iint_{-\infty}^{\infty} f(x, y) e^{i 2 \pi(u x+v y)} d x d y$
where x, y are rectangular spatial coordinates and u, v are spatial frequencies.
We can rewrite this as two 1D transforms:
$F(u, v)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(x, y) e^{i 2 \pi u x} d x\right] e^{i 2 \pi v y} d y$
i.e. for each y take a 1D FT with respect to x, then take a 1D FT with respect to y.

Polar Coordinates

Since

$$
\begin{aligned}
u x+v y & =\rho r(\cos \phi \cos \theta+\sin \phi \sin \theta) \\
& =\rho r \cos (\phi-\theta),
\end{aligned}
$$

then the Fourier transform in polar coordinates is

$$
F(\rho, \phi)=F\{f(r, \theta)\}=\int_{0}^{2 \pi} \int_{0}^{\infty} f(r, \theta) e^{i 2 \pi \rho r \cos (\phi-\theta)} r d r d \theta
$$

and the inverse transform is

$$
f(r, \theta)=\mathcal{F}^{-1}\{F(\rho, \phi)\}=\int_{0}^{2 \pi} \int_{0}^{\infty} F(\rho, \phi) e^{-i 2 \pi \rho r \cos (\phi-\theta)} \rho d \rho d \phi
$$

Separability in Polar Coordinates

A function $f(r, \theta)$ is separable in polar coordinates if it can be written in the form

$$
f(r, \theta)=f_{r}(r) f_{\theta}(\theta)
$$

Suppose such an f is circularly symmetric, with $f_{\theta}(\theta)=1$. As a specific example, we will consider a 2D circular (or cylinder) function:

$$
\operatorname{circ}(r)= \begin{cases}1 & r<1 \\ 1 / 2 & r=1 \\ 0 & r>1\end{cases}
$$

The Fourier transform of a circularly symmetric function is

$$
F(\rho, \phi)=2 \pi \int_{0}^{\infty} r f_{r}(r) J_{0}(2 \pi \rho r) d r .
$$

This is also known as the Hankel transform of order zero and as the Fourier-Bessel transform. The function J_{0} is the zero order Bessel function of the first kind defined as

$$
J_{0}(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i a \cos (\theta-\phi)} d \theta
$$

It oscillates like a damped cosine.
Continuing with our specific example, the Fourier transform of $\operatorname{circ}(r)$ is

$$
F\{\operatorname{circ}(r)\}=2 \pi \int_{0}^{\infty} r \operatorname{circ}(r) J_{0}(2 \pi \rho r) d r=2 \pi \int_{0}^{1} r J_{0}(2 \pi \rho r) d r .
$$

Substitute $r^{\prime}=2 \pi \rho r$, and $d r^{\prime}=2 \pi \rho d r$ to find:

$$
F\{\operatorname{circ}(r)\}=\frac{1}{2 \pi \rho^{2}} \int_{0}^{2 \pi \rho} r^{\prime} J_{0}\left(r^{\prime}\right) d r^{\prime}=\frac{J_{1}(2 \pi \rho)}{\rho}, \quad \text { since } \int_{0}^{\alpha} x J_{0}(x) d x=\alpha J_{1}(\alpha)
$$

where J_{1} is the first order Bessel function of the first kind, similar to a damped sinusoid.
The function $\operatorname{somb}(\rho)$ or sombrero (also known as Mexican hat, Bessinc, and jinc) is defined as

$$
\operatorname{somb}(\rho)=\frac{2 J_{1}(2 \pi \rho)}{2 \pi \rho}
$$

and is pictured on the right side below. Thus, the Fourier transform of $\operatorname{circ}(r)$ is proportional to a sombrero function of ρ, the radial coordinate in frequency space:

$$
F\{\operatorname{circ}(r)\}=\pi \operatorname{somb}(\rho)
$$

