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Linear Imaging Approximations

Notes to accompany the lectures delivered by David A. Muller at the Summer
School on Electron Microscopy: Fundamental Limits and New Science held
at Cornell University, July 13-15, 2006.

Reading and References:
Chapter 1-3 of “Advanced Computing in Electron Microscopy” by E. J. Kirkland
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1 atom wide (0.2 nm)  beam is scanned
across the sample to form a 2-D image

Elastic Scattering 
~ "Z contrast"     

Scanning Transmission Electron Microscopy
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P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416 826 (2002)
U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, Nature Materials, 1 102 (2002)
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ReciprocityReciprocity (or STEM vs. CTEM)(or STEM vs. CTEM)

CTEM STEM

Reciprocity (for zero-loss images):
A hollow-cone image in CTEM an annular-dark field image in STEM.

Specimen

Illumination
angle

α

Collector
angle

β

Specimen

Objective 
Aperture

Objective 
Aperture

Viewing
Screen Gun

Gun Detectors

However: In STEM, energy losses in the sample do not contribute to 
chromatic aberrations  (Strong advantage for STEM in thick specimens)
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Reciprocity

From L. Reimer, Transmission Electron Microscopy

Reciprocity: Electron intensities and ray paths in the 
microscope remain the same if (i) the direction of rays is 
reversed, and (ii) the source and detector are interchanged.

Proof follows from time-reversal symmetry of the electron trajectories and elastic 
scattering (to all orders).

Reciprocity does not hold for inelastic scattering:
Sample is after probe forming optics in STEM  - energy losses in sample do not cause 
chromatic blurring in the image

Sample is before the imaging optics in TEM – energy losses in the sample do cause 
chromatic blurring in the image.  Imaging thick samples in TEM can be improved by 
energy filtering (so on the zero-loss image is recorded).  This is not needed for STEM.
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Reciprocity

From L. Reimer, Transmission Electron Microscopy

Image recorded
In parallel

Image recorded serially by 
scanning the source

Condensor
aperture
(before 
sample)

Objective 
aperture
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Controls coherence

Controls resolution
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Condensor
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STEMTEM
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Geometric Optics Geometric Optics –– A Simple LensA Simple Lens

x x

Object
plane

image
plane

Back
focal
plane

front
focal
plane

Lens
at z=0

α

Focusing: angular deflection of ray α distance from optic axis
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Geometric Optics Geometric Optics –– A Simple LensA Simple Lens

x x

Object
plane

image
plane

Back
focal
plane

front
focal
plane

Lens
at z=0

α1

α1

Wavefronts in focal plane are the Fourier Transform of the Image/Object

α1
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All plane waves at angle α
pass through the same point
In the focal plane.

If the component of the wavevector
in the focal plane is     ,then
a function in the back focal plane, F(k)
is the Fourier transform of a function 
in the image plane f(x)
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Fourier Transforms

{ } sdekFkFxf xki rrrr rr.21 )()()( π−∞

∞−

− ∫==F

Forward Transform: (image- > diffraction)

Inverse Transform: (diffraction ->image)

Note: in optics, we define k=1/d, while in physics k=2π/d
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FT of A Circular Aperture
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An ideal lens would have an aperture A(k)=1 for all k.  However, there is a maximum 
angle that can be accepted by the lens, αmax, and so there is a cut-off spatial 
frequency kmax= k0 αmax, 

Focal Plane
Image Plane
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The Aperture Function in the Image Plane

0

1

2

3

-3 -2 -1 0 1 2 3

A(
x)

x

rk
rkJrA

max

max1

2
)2(2)(

π
ππ=

First zero at 2πkmaxr = 0.61

0

4

8

-3 -2 -1 0 1 2 3
|A

(x
)|2

x

2)(rA

The image of single point becomes blurred to (why?) 
2)(rA



David Muller 2006 11

Linear Imaging
f(x) g(x)h(x)

imageobject Blurring function

( ) )()(')'()'( xhxfdxxxhxfxg ⊗≡−= ∫
∞

∞−

Image =  object convolved (symbol     ) with the blurring function, h(x)⊗

(Kirkland chapter 3)

( ) )()( kHkFkG =
In Fourier Space, convolution becomes multiplication (and visa-versa)

Point spread function

Contrast Transfer Function



David Muller 2006 12

Contrast Transfer Function
The contrast transfer function (CTF) is the Fourier Transform 
of the point spread function (PSF)

The CTF describes the response of the system to an input plane wave.
By convention the CTF is normalized to the response at zero frequency (i.e. DC level)

( )
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H
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A low-pass filter

k

( )kH~

A high-pass filter

k

( )kH~

(division by k in Fourier Space
->integration in real space)

(multiplication by k in Fourier Space
->differentiation in real space)

smoothing Edge-enhancing
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High-pass filter

Edge-enhancing

Original image

A high-pass filter

Final image

Fourier Transform

x

Inverse Transform

=
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Original image

A low-pass filter

Final image

Fourier Transform

x

Inverse Transform

=

Low pass filter
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The Aperture Function in the Image Plane
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ε

From Wyant and Creath

Adding a central beam-stop
to the aperture increases the 
tails on the probe but only 
slighty narrows the central 
peak.

Is this the best we can do?
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Coherent vs. Incoherent Imaging
(Kirkland,  Chapter 3.3)

Lateral Coherence of the Electron Beam
for an angular spread βmax (Born&Wolf):

max

16.0
β

λ
≈∆ cohx

Image resolution
maxα
λ

≈d

Combining these 2 formula we get:

Coherent imaging:  

Incoherent imaging: 

maxmax 16.0 αβ <<

maxmax 16.0 αβ >> (usually ) maxmax 3αβ >

Wave Interference inside allows us to measure phase changes 

as wavefunctions add:

α

β

cohx∆

No interference, phase shifts are not detected. Intensities add
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Coherent Imaging
(Kirkland 3.1)

Convolve wavefunctions, measure intensities

( ) )()( xAxx objectimage ⊗=ψψ

( ) ( ) 2
xxg imageψ=

( )xobjectψ

( )kimageψ

Lens has a PSF A(x)

We measure the intensity, not the wavefunction

( ) )()( kAkk objectimage ⋅=ψψ

( ) 2
)()( xAxxg object ⊗= ψ

α

β~0
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Incoherent Imaging (Kirkland 3.4)

Convolve intensities, measure intensities

( ) 222
)()( xAxx objectimage ⊗= ψψ

( ) ( ) 2
xxg imageψ=

( )xobjectψ

( )kimageψ

We measure the intensity, not the wavefunction

( ) [ ] [ ])()()()( ** kAkAkkk objectobjectimage ⊗⋅⊗= ψψψ

( ) 22
)()( xAxxg object ⊗= ψ

α

β Lens has a PSF
2)(xA

Lost phase information, only work with intensities

CTF
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Coherent vs Incoherent Imaging

Phase Object

Amplitude Object

Contrast Transfer 
Function

We measure

Point Spread 
Function

IncoherentCoherent

( ) 2
)()( xAxxg object ⊗= ψ ( ) 22

)()( xAxxg object ⊗= ψ

)(xA

[ ])(Im kA

2)(xA

2* )()( kAkA ⊗
[ ])(Re kA



David Muller 2006 21

Convolutions
(from Linear Imaging Notes, Braun)
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Resolution Limits Imposed by the Diffraction Limit
(Less diffraction with a large aperture – must be balanced against Cs)

Lens

00
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61.0
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λ
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d

Gaussian 
image plane 

The image of a point transferred through a lens with a circular aperture of

semiangle α0 is an Airy disk of diameter

0d

(for electrons, n~1, and the angles are small)

α0  

(0.61 for incoherent imaging e.g. ADF-STEM, 1.22 for coherent or phase contrast,. E.g TEM)
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Electron Wavelength vs. Accelerating Voltage
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Resolution Limits Imposed by Spherical Aberration, C3
(Or why we can’t do subatomic imaging with a 100 keV electron)

Lens

3
3min 2

1 αCd =

Plane of
Least Confusion

Gaussian 
image plane 

C3=0

C3>0

For Cs>0, rays far from the axis are bent too strongly and come to a crossover 
before the gaussian image plane.

For a lens with aperture angle α, the minimum blur is 

mind

Typical TEM numbers: C3= 1 mm, α=10 mrad → dmin= 0.5 nm
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Balancing Spherical Aberration against the Diffraction Limit
(Less diffraction with a large aperture – must be balanced against Cs)
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Balancing Spherical Aberration against the Diffraction Limit
(Less diffraction with a large aperture – must be balanced against C3)

4/34/1
3min 43.0 λCd =

A more accurate wave-optical treatment, allowing less than λ/4 of phase shift 
across the lens gives

Minimum Spot size:

4/1

3

4
⎟⎟
⎠

⎞
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⎛
=

Copt
λαOptimal aperture:

At 200 kV, λ=0.0257 Ǻ, dmin = 1.53Ǻ and αopt = 10 mrad

At 1 kV, λ=0.38 Ǻ, dmin = 12 Ǻ and αopt = 20 mrad

We will now derive the wave-optical case



David Muller 2006 27

Spherical Aberration (C3) as a Phase Shift

Lens

Gaussian 
image plane 

C
3 =0

C
3 >0

Phase shift from lens aberrations:

∆s = path difference due to wave aberration

Wavefronts (lines of equal phase)

( ) ( )α
λ
παχ s∆=

2

α

For spherical aberration but there are other terms as well ( ) 4
34

1 αα Cs =∆

(remember wave exp[ i(2π/λ) x] has a 2π phase change every λ)
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An Arbitrary Distortion to the Wavefront can be expanded in a power series
(Either Zernike Polynomials or Seidel aberration coefficients)

=)',( θρχ

Zernike Polynomials
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An Arbitrary Distortion to the Wavefront can be expanded in a power series
Seidel Aberration Coefficients (Seidel 1856)

Or more generally

EM community notation is similar:

C5,0 and C7,0 are also important
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An Arbitrary Distortion to the Wavefront can be expanded in a power series
Here are some terms plotted out
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Phase Shift in a Lens

( ) ( )αχαϕ ie=

Electron wavefunction in focal plane of the lens
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Where the phase shift from the lens is

Keeping only spherical aberration and  defocus

(Kirkland,  Chapter 2.4)
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Goal is to get the smallest phase shift over the largest range of angles
Optimizing defocus and aperture size for ADF

Step 1:  Pick largest tolerable phase shift:  in EM λ/4=π/2,  in light optics λ/10
Step 2:  Use defocus to oppose the spherical aberration shift within the widest π/2 band
Step 3:  Place aperture at upper end of the π/2 band
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Goal is to get the smallest phase shift over the largest range of angles

Step 1:  We assume a phase shift <λ/4=π/2 is small enough to be ignored

Step 2:  Use defocus to oppose the spherical aberration shift within the widest π/2 band

4/34/1
3min 43.0 λCd =

Minimum Spot size:
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λαOptimal aperture:
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d
α

λ61.0
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Step 3:  Place aperture at upper end of the π/2 band & treat as diffraction limited

Optimal defocus: ( ) 2
1

λSopt Cf =∆

(The full derivation of this is given in appendix A of Weyland&Muller

Optimizing defocus and aperture size for ADF
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(derivation is different, given in Kirkland 3.1)

4/34/1
3min 77.0 λCd =

Minimum Spot size:
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Optimal defocus: ( ) 2
1

5.0 λSopt Cf =∆

(The full derivation of this is given in appendix A of Weyland&Muller

Optimizing defocus and aperture size for TEM

Look for a uniform phase shift of ±π/2 across lens
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Phase Shift in a Lens with an Aberration Corrector

( ) ( )αχαϕ ie=

Electron wavefunction in focal plane of the lens
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Where the phase shift from the lens is

O.L. Krivanek et al. Ultramicroscopy 96 (2003) 229

5th order spherical aberration
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Goal is to get the smallest phase shift over the largest range of angles

Optimizing Aperture size with a C3 Corrector

Step 1:  Pick largest tolerable phase shift:  in EM λ/4=π/2,  in light optics λ/10
Step 2:  Use defocus and C3 (now negative) to balance C5 within the widest π/2 band
Step 3:  Place aperture at upper end of the π/2 band
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Goal is to get the smallest phase shift over the largest range of angles

Optimizing defocus and aperture size

Step 1:  We assume a phase shift <λ/4=π/2 is small enough to be ignored

Step 2:  Use C3 to oppose the C5 shift within the widest π/2 band
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Step 3:  Place aperture at upper end of the π/2 band & treat as diffraction limited

Optimal C3: ( ) 3
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Contrast Transfer Functions of a lens with Aberrations

Coherent Imaging CTF: [ ] ( )[ ]kSinkA χ=)(Im
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Contrast Transfer Functions of a lens with Aberrations

Incoherent Imaging CTF:
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Phase vs. ADF Contrast

TEM:  Bandpass filter:low frequencies removed = artificial sharpening
ADF :  Lowpass filter: 3 x less contrast at 0.3 nm than HRTEM
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(JEOL 2010F, Cs=1mm)
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Phase vs. ADF Contrast
Random white noise

ADF CTFBF CTF

a-C support films look like this
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Phase vs. ADF Contrast

David Muller, 2000

ADF :  40% narrower FWHM, smaller probe tails

(JEOL 2010F, Cs=1mm, Scherzer aperture and focus)
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CTF

PSF

(200 kV, C3=1.2 mm)

Effect of defocus and aperture size on an ADF-STEM image
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ADF of [110] Si at 13 mr, C3=1mm

Strong {111} fringes Strong {311} fringes

2 clicks overfocus

Best 111 and 311 fringes occur at different focus settings
If the aperture is too large

What happens with a too-large aperture?
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Aperture Size is Critical
(200 kV C3=1mm)
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30% increase in aperture size       ~50% decrease in contrast for Si {111} fringes
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Aperture Size is Critical
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All the extra probe current falls into the tails of the probe – reduces SNR

(200 kV C3=1mm)
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Finding the Aperture with the smallest probe tails

(Kirkland, Fig 3.11)
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Depth of Field, Depth of Focus

2
00

0
61.0

tan α
λ

α
≈=

dD

For d=0.2 nm, α=10 mrad, D0= 20 nm For d= 2 nm, α=1 mrad, D0= 2000 nm!

For d= 0.05 nm, α= 50 mrad, D0= 1 nm!
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Depth of Field in ADF-STEM:  3D Microscopy?

D=6 nm: θ0 = 25 mr

(300 kV, 25 mrad)
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Depth of Field in ADF-STEM:  3D Microscopy?
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Does Channeling Destroy the 3D Resolution?
(Multislice Simulation of [110] Si @ 200 kV, 50 mrad)
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NO! (at least in plane – relative intensities between different depths are still out)

Fringe contrast
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Summary

Contrast Transfer Functions:  
Coherent: 

Lower resolution, higher contrast
Easy to get contrast reversals with defocus
Aperture size only affects cutoff in CTF

Incoherent:  

Higher resolution, lower contrast
Harder to get contrast reversals with defocus
Aperture size is critical – affects CTF at all frequencies

4/34/1
3min 43.0 λCd =

4/1

3

4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Copt
λα

4/34/1
3min 77.0 λCd =

4/1

3

6
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Copt
λα


