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How Delocalized is an EELS Signal?

For E,=100 keV electrons, A=0.037 A v=1.64x108 m/s

2
For dipole scattering, the cross section is d°o o #Kf M i>‘2 0, (AE)
dQdE ~ 6° +6;
. i AE
with the characteristic angle at energy loss AE of O¢ = E
0
By analogy with the Raleigh resolution criterion, we might expect a resolution of
" A
inel ~ 4
‘9E

(this would assume that all the scattering lies inside 6, which is not true).

For an energy loss AE=20 eV, we get I, =06.5Nm
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How Delocalized is an EELS Signal?

Diamond Nanopatrticle in ZnS

18 eV 25eV 34eV

Muller & Silcox, Ultramicroscopy 59 (1995) 195.

An upper limit to the cutoff angle is the maximum momentum transfer in the small-angle
approximation. This is also the peak of the Bethe Ridge at

Oy =20
Which gives E, o
g9 r.. ~A.,|——= or 0.26 nm for AE=20 eV which is a
AE  little too small.

andr

min

The real answer seems to lie between r.

inel (and closer to rmin)
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Fig.1: Localization diameter for 100keV
electrons and a 10mrad on-axis detector [6].

R. F. Egerton, Journal of Electron Microscopy 48 (1999) 711.
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Comparison of Dipole and Full Atomic Calculations

For a free atom, agreement is ~10% or better.
Crystal channeling could cause problems
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Classical Picture of Energy Loss by a Fast,
(Bohr, 1913)

Charged Patrticle

Consider a fast e- that passes a free, target charge and is deflected through a small angle

b e - velocity v N
-
X “e->
E, |
[ 26?2 o
Momentum transfer AP = je E, (’[) dt = —— Dipole field
e bv
gl | 2eilil

Energy Loss AE(b)= By i
m mv

Energy loss is a function of impact parameter
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Quantum Treatment (Single scattering, linear imaging)

For a probe wavefunction a(b) , detector function D and transmission function w(x,x’,E)
The probability of losing energy E at distance b from the atom is

4R,
P(b. E)= - [a(p—b)a*(p' —b)

Xw(p, p', EYD(p—p') d°p dp".

The detector controls overlap of the wavefunction from different positions in the sampl

i.e. it controls the coherence volume (optics) or degree of nonlocality of the probe (QM

_27Bd(kBalp —¢'l)
kBolp—p'l

Dip—p) — 7B,

For a tiny aperture on axis,

which allows coherence over the entire sample, i.e. a phase sensitive image
For large aperture on axis, D(p—p')=-2=p(1p—p'l).

which removes non-local overlap, i.e. an incoherent image
D.A. Muller, I, Silcox / Ultramicroscopy 59 (1995) 195-213 7



4R, ,
P(b, E) = (B)1*®@w(p, p, E).

Convolution of probe intensity with response function.
|a(b)|* has the same form as elastic incoherent imaging, but w is quite delocalized

B3

R,
For a dipole excitation ~ Po(b, £) = E,

“la(b) ]’

&

1 .
; ) [ 1 Ko(b/buar) 241

'JI.TJHZI.

+ | K y( b/ by ) Xg - o8 ¥12].

i.e. w(r,E) has the same form as the classical loss function for a dipole

D.A. Muller, I. Silcox / Ultramicroscopy 59 (1995) 195-213



EELS with a Tiny Collector Aperture

For a dipole excitation p (b, E)

LY
27t E,

142
b ) |a(b) @ [Ky(kople)zg
IThaX

+iK (kgpbs)xg cos y] |2

Convolution of probe wavefunction with response function has the same form as
elastic coherent imaging, but again the ‘“inelastic object” is quite delocalized.
Expect phase contrast and contrast reversals

D.A. Muller, I. Silcox / Ultramicroscopy 59 (1995) 195-213
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Fig. 2. Spatial distribution of the probability for a 23 eV
energy loss by a 100 keV electron beam in a STEM with
O, = 1.3 mm, 7K A defocus and a 10 mrad objective aperture;
ia) for a 1.6 mrad collector aperture and (b) for a 10 mrad
collector aperture. The dotted line shows the component of
Plb, E) perpendicular to the optic axis while the ::Int-rla:ih::nr]
line shows the POk, ) along the optic axis. & is at 43 A

T

but the semiclassical approximation holds to within 5 A of the
) dipole where the “donut™ shape appears.
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Effect of the Collector Aperture

Small Collector

Large Collector

(narrower central peak)
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Delocalization has long tails and a sharp central peak

Radially Integrated Point Spread Functions for

Inelastic Point Spread Function for a 100 kV STEM Energy Loss Images in a 100 kV STEM (CS:3.3mm)
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Delocalization has long tails and a sharp central peak
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Fig. 8. Measures of spatial resolution for a 100 kV STEM at
1100 A defocos with C, =33 mm, a B.18 mrad objective
aperture and a 10 mrad collector aperture. The Tull width at
half maximum (FWHM}, full width at tenth maximum and the
radius of the disk containmg 8% of the scattered electrons
are shown for P(k, E) from a single dipole, calculated using

Eq. (13).
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Bulk and Surface Plasmons

Screening inside a solid

Screening outside e a solid 1

(screening of the image charge) g(w)+1

Bulk energy loss: P(w)a Im(_—lj

)

Plasmon pole «),, at =0

~2
g(a))+1j Plasmon pole 1N2w,, at &=-1

surface energy loss: P(®)a Im(

David Muller 2006 13



Plasmons at an interface
A. Howie S Micron 34 (2003) 121125
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Fig. . {a) Typical geometry for the collsction of electron energy loss
apecia as a function of impact parameter bnear a planar inerface in a fhin
film. (k) The function Ky{x) describes the spatial influence of the boundary
with o Dby

become noticeable (a few nm for plasmons) 14
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EELS across a 50 nm thick Silicon edge

Bulk Plasmon
\ o Silicon

Surface Plasmon
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A. Howie / Micron 34 (2003) 121123

b
v

Fig. 2. Diclectric sandwich with a thin boundary phase A separating two
other dielectric B and C.

When layer A becomes thinner than v/w , the bulk mode from A is suppressed.
(i.e. can’t measure the bulk dielectric function of a grain boundary phase — must use
Interface formula)

e.g. Neyer et al., 1997. Plasmon coupling and finite size effects in metallic
mutilayers. J. Microsc. 187, 184-192.

David Muller 2006 16



When a nanoparticle is smaller than v/, the probe will also excite spherical, multipole

plasmon modes.

I 17 eV 9 eV
Spherical CavityModes
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FIG. 2. Typical low-energy-loss spectra of silicon particles:

(a) over a particle; (b) grazing incidence.

D. Ugarte, C. Colliex, P. Trebbia, Phys Rev B45 (1992) 4332
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Flectron Energy L.oss Spectrum at Edge of 4 nm Silicon Tip
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Data Fit with 3 Lorentziahs
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B.W.Reed et al, Phys Rev B60 (1992) 5641




Summary

 The EELS signal is localized to within a few Angstroms for core edges
e and on the order of 1-6 nm for valence (1-30 eV) excitations.

» Valence EELS on small particles measures more than just the bandgap
o Surface plasmons, Cherenkov radiation are just as important
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