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Low Loss EELS

Notes to accompany the lectures delivered by David A. Muller at the Summer
School on Electron Microscopy: Fundamental Limits and New Science held
at Cornell University, July 13-15, 2006.

Additional Reading and References:
Kohl & Rose, Adv. Electron. Electron Phys. 65 (1985) 173.
Muller & Silcox, Ultramicroscopy 59 (1995) 195.
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How Delocalized is an EELS Signal?

For E0=100 keV electrons, λ=0.037 Å, v=1.64x108 m/s

For dipole scattering, the cross section is ( )Eirf
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By analogy with the Raleigh resolution criterion, we might expect a resolution of
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For an energy loss ∆E=20 eV, we get nmrinel 5.6=

(this would assume that all the scattering lies inside θE, which is not true).  
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How Delocalized is an EELS Signal?

EB θθ 2≈

An upper limit to the cutoff angle is the maximum momentum transfer in the small-angle 
approximation.  This is also the peak of the Bethe Ridge at

E
Er
∆

≈ 0
min λWhich gives or  0.26 nm for ∆E=20 eV which is a 

little too small.

The real answer seems to lie between rinel and rmin (and closer to rmin)

Diamond Nanoparticle in ZnS

Muller & Silcox, Ultramicroscopy 59 (1995) 195.
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R. F. Egerton, Journal of Electron Microscopy 48 (1999) 711. 

Dipole Theory Calculations of Inelastic Resolution 
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Comparison of Dipole and Full Atomic Calculations

dipole dipole

For a free atom, agreement is ~10% or better. 
Crystal channeling could cause problems
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Classical Picture of Energy Loss by a Fast, Charged Particle
(Bohr, 1913)
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Energy loss is a function of impact parameter

Consider a fast e- that passes a free, target charge and is deflected through a small angle
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Quantum Treatment (Single scattering, linear imaging)

For a probe wavefunction a(b) , detector function D and transmission function w(x,x’,E)
The probability of losing energy E at distance b from the atom is

For large aperture on axis, 

which removes non-local overlap, i.e. an incoherent image

The detector controls overlap of the wavefunction from different positions in the sample
i.e. it controls the coherence volume (optics) or degree of nonlocality of the probe (QM

For a tiny aperture on axis, 

which allows coherence over the entire sample, i.e. a phase sensitive image
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EELS with a Large Collector Aperture

Convolution of probe intensity with response function.
has the same form as elastic incoherent imaging, but w is quite delocalized

For a dipole excitation

i.e. w(r,E) has the same form as the classical loss function for a dipole
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EELS with a Tiny Collector Aperture

Convolution of probe wavefunction with response function has the same form as 
elastic coherent imaging, but again the “inelastic object” is quite delocalized.
Expect phase contrast and contrast reversals

For a dipole excitation
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Effect of the Collector Aperture

Small Collector

Large  Collector

Donut
or volcano
shape

Long tails
In both cases

(narrower central peak)
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Inelastic Point Spread Function for a 100 kV STEM

Energy loss has little
effect on the FWHM

But a LARGE effect on 
the FW 10th maximum

Delocalization has long tails and a sharp central peak
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Delocalization has long tails and a sharp central peak
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Bulk and Surface Plasmons
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Bulk energy loss:

Plasmon pole 1/√2ωp, at ε=-1

Plasmon pole ωp, at ε=0

surface energy loss:
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Plasmons at an interface

Interface 
plasmon

Bulk

bmax=v/ω Is the natural length scale
Where plasmon effects
become noticeable (a few nm for plasmons)
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EELS across a 50 nm thick Silicon edge
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When layer A becomes thinner thanxv/ω , the bulk mode from A is suppressed.
(i.e. can’t measure the bulk dielectric function of a grain boundary phase – must use
Interface formula)

Valence EELS from a thin interlayer?

e.g. Neyer et al., 1997. Plasmon coupling and finite size effects in metallic 
mutilayers. J. Microsc. 187, 184–192.
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Valence EELS on Nanoparticles

When a nanoparticle is smaller than v/ω,  the probe will also excite spherical, multipole
plasmon modes.

D. Ugarte, C. Colliex, P. Trebbia, Phys Rev B45 (1992) 4332

Spherical Modes

Spherical CavityModes
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Valence EELS on Nanoparticles

B.W.Reed et al, Phys Rev B60 (1992) 5641

Cherenkov
Radiation
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Summary

• The EELS signal is localized to within a few Angstroms for core edges
• and on the order of 1-6 nm for valence (1-30 eV) excitations.

• Valence EELS on small particles measures more than just the bandgap
• Surface plasmons, Cherenkov radiation are just as important


