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Single atom 
Sensitivity:

Electron Energy 
Loss Spectrometer

Annular Dark Field (ADF) detector
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1 atom wide (0.2 nm)  beam is scanned
across the sample to form a 2-D image

Elastic Scattering 
~ "Z contrast"     

Scanning Transmission Electron Microscopy
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P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416 826 (2002)
U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, Nature Materials, 1 102 (2002)



ReciprocityReciprocity (or STEM vs. CTEM)(or STEM vs. CTEM)
CTEM STEM

Reciprocity (for zero-loss images):
A hollow-cone image in CTEM an annular-dark field image in STEM.

Specimen

Illumination
angle α Collector

angle

β

Specimen

Objective 
Aperture

Objective 
Aperture

Viewing
Screen Gun

Gun Detectors

However: In STEM, energy losses in the sample do not contribute to 
chromatic aberrations  (Strong advantage for STEM in thick specimens)



David Muller 2006 5

Imaging Thick Samples at 200 kV
BF-TEM BF-STEM (~2mr θc)

•Less blurring, more contrast in thick samples with STEM
•No Signal in W plugs, diffraction in poly  

unsuitable for tomography



Phase Contrast for Different Illumination AnglesPhase Contrast for Different Illumination Angles

• For distances larger than 1 nm, there is little phase contrast to start with.

• When the illumination angles exceeds the objective aperture,
all phase contrast is suppressed!
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Amplitude Contrast for Different Illumination AnglesAmplitude Contrast for Different Illumination Angles

• For distances larger than 1 nm, there is little phase contrast to start with.

• When the illumination angles exceeds the objective aperture,
all contrast reversals are removed and the resolution is increased!

(10.5 mr Objective, E0=200kV, Cs=1 mm, Scherzer Defocus)
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Why Increased Resolution? Why Increased Resolution? (coherent vs. incoherent imaging)(coherent vs. incoherent imaging)
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•E0=200kV
•Cs=1.0 mm
•Scherzer
aperture

•and defocus

( ) ( )22 /exp σϕ rr −≈Eg:

•Coherent imaging PSF is the probe wavefunction,
•Incoherent imaging PSF is the square of wavefunction

( ) ( )222 /2exp σϕ rr −≈ 2σσ =′
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Increasing the Collector Angle (θc)

1 2

3 4
30 nm

3 mr 10 mr

80 mr ADF

θc>>θobj

•No Phase
contrast

•No Diffraction
contrast

θc<<θobj
•Phase
contrast

•Diffraction
contrast

θc≈θobj

•No Phase
contrast

•Diffraction
contrast

The incoherent 
BF image is the 
complement of 
the ADF image
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WiSi40  - 40Å HfO2 on O3 Underlayer + 850C/Spike/NO  (6/12/2)

8±1 Å

Si

Poly-Si

HfO2

SiO2

40±1 Å

Bright-field STEM with small collector- like conventional TEM

20 Å
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Imaging Thick Samples at 200kV
ADF-STEM  (θc>45 mr) ADF-STEM  (θc>75 mr)

•No more diffraction contrast
•Signal in W plug not monotonic, could be mistaken for voids
•Effect reduced by increasing the collector angle
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Annular Dark Field STEM at 200 kV

•Interpretable (monotonic, single valued) signal in Silicon to ~1 um depth
•There is a geometric limit to the detector angles (~200-400 mr)
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Effect of Camera Length

1.65

1.60

1.55

1.50

Z 
ex

po
ne

nt

50403020
camera length (cm)

2.5

2.0

1.5

1.0

I sb
 / 

I S
i

50403020
camera length (cm)

Sb atom invisible

 DP2 on-column
 Sb2V
 DP2 off-column
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Strain Contrast at Si/SiO2 Interfaces

David Muller 2001

50 mrad 25 mrad

c-Si

SiO2

a-Si

(JEOL 2010F,  200 kV, Cs=1mm)

Strain Fields cause dechanneling (and scattering to small angles)

ADF Inner angle:

Z. Yu, D. A. Muller, and J. Silcox, J. Appl. Phys. 95, 3362 (2004).



Strain Contrast vs. Sample ThicknessStrain Contrast vs. Sample Thickness
Contrast at a c-Si/-aSi is strongly depends on sample thickness

130 Å
thick

340 Å
thick

Strain Contrast effects at the interface:
for 130 Å thick sample, ~0%; for 340 Å thick sample, 15%.

100 kV, 45 mrad ADF inner angle

Z. Yu, D. A. Muller, and J. Silcox, J. Appl. Phys. 95, 3362 (2004).
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Contrast from Random Strain FieldsContrast from Random Strain Fields
(treated as a static Debye-Waller Factor)

No channeling            No thickness dependence

Z. Yu, D. A. Muller, and J. Silcox, J. Appl. Phys. 95, 3362 (2004).
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Contrast from Random Strain FieldsContrast from Random Strain Fields
(using frozen phonons in multislice)

Channeling            Thickness dependence

LAADF HAADF

Z. Yu, D. A. Muller, and J. Silcox, J. Appl. Phys. 95, 3362 (2004).
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Contrast from Random Strain FieldsContrast from Random Strain Fields
(using frozen phonons in multislice)

Channeling            Thickness dependence
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Contrast from Random Strain FieldsContrast from Random Strain Fields
(treated as a static Debye-Waller Factor)

Z. Yu, D. A. Muller, and J. Silcox, J. Appl. Phys. 95, 3362 (2004).
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Imaging Light Atoms
Dechanneling contrast from the Strain Field around impurities

Si substrate

4 nm Gate Oxide

Polysilicon
gate

Implanted B
B segregated

to the interface?

Single atom contrast is expected at 77K (Hillyard and Silcox)
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Imaging Vacancies?
( grow 25 layers of SrTiO3-δ on SrTiO3)

HAADF 
“Z” map

LAADF 
“Strain” map
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Detection sensitivity: 1-4 Oxygen vacancies

D. A. Muller et al Nature 430, 657-661 (2004).
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Ronchigrams

• Most accurate manual method of alignment

• Easy to find the optic axis

• Easy to correct serious astigmatism

• Easy to bring the sample into focus

• Works best on an amorphous layer

• Start with the largest aperture

E. M. James, N. D. Browning, Ultramicroscopy, 78 (1999) 125-139 
J. M. Cowley,  Ultramicroscopy 4, 413-418.(1979)
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Ronchigrams – no Cs

Lens

sample
Viewing screen

(beam is at cross-over before sample)

Sample is magnified, erect
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Ronchigrams – no Cs

Lens

sample
Viewing screen

(beam is at cross-over after sample)

Sample is magnified, inverted
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Lens

Cs=0

Cs>0
sample

Ronchigrams – no Cs

(beam is at almost cross-over on the sample)

Almost infinite magnification
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Ronchigrams with Spherical Aberration, Cs

Lens

Cs=0

Cs>0
sample

For Cs>0, rays far from the axis are bent too strongly and 
come to a crossover before the gaussian image plane.

Almost infinite magnification,
Only at small angles



Spherical Aberration

Apparent deflection at the object is proportional to
the cube of the distance off-axis  within the  imaging  lens. 
Deflection towards axis is always too strong.     

Phil Batson, IBM



Screen

Specimen

Shadow Map: “Ronchigram”

Objective

20 nm

Source

Ronchi, V. (1964) Forty years of history of a grating interferometer. Applied Optics 3, 437 – 450. Phil Batson, IBM



Screen

Specimen

Shadow Map: “Ronchigram”

Objective

20 nm

Source

Ronchi, V. (1964) Forty years of history of a grating interferometer. Applied Optics 3, 437 – 450. Phil Batson, IBM



Screen

Specimen

Shadow Map: “Ronchigram”

Objective

20 nm

Source

Ronchi, V. (1964) Forty years of history of a grating interferometer. Applied Optics 3, 437 – 450. Phil Batson, IBM



Screen

Specimen

Shadow Map: “Ronchigram”

Objective

20 nm

Source

Ronchi, V. (1964) Forty years of history of a grating interferometer. Applied Optics 3, 437 – 450. Phil Batson, IBM



Screen

Specimen

Shadow Map: “Ronchigram”

Objective

50 nm

Source

Ronchi, V. (1964) Forty years of history of a grating interferometer. Applied Optics 3, 437 – 450. Phil Batson, IBM



viewing screen or 
CCD camera

specimen

electron source

probe-forming 
lens

defocus

The Electron Ronchigram

Cowley, J. Elec Microsc Tech 3, 25 (1986)
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Nigel Browning, UC Davis
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Effect of Cs on Ronchigram

James and Browning, Ultramicroscopy 78, 125 (1999)

Nigel Browning, UC Davis



Ronchigrams from Si <110>
overfocused

underfocused

∆f=0 nm Scherzer focus ∆f=-100 nm ∆f=-150 nm

∆f=-200 nm ∆f=-300 nm ∆f=-350 nm

∆f=100 nm ∆f=50 nm∆f=150 nm

Nigel Browning, UC Davis



Two fold astigmatism Three fold astigmatism

Correcting for Astigmatism

Nigel Browning, UC Davis



Forming the Smallest Probe

Put aperture over area of constant phase in Ronchigram to give CBED pattern

Nigel Browning, UC Davis
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Ronchigram focus series on a-C

This aperture
Is too big
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Correcting Severe Astigmatism in Ronchigrams

+y

-y

+x-x

(don’t image probe)
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Ronchigrams on Crystals

Tilted On Axis (not in focus)



Ronchigrams on Crystals

Tilted
In focus overunder

More over way over
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Measuring the Aperture Size
(Using [110] Silicon as a reference)

Scan the beam over a small area to remove ronchigram structure

A
B

Distance AB
Is 4 x Bragg Angle
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Measuring the Aperture Size
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Reality Check
(Can I see a lattice spacing)

Disks must overlap to form a lattice fringe

(more overlap, more contrast)*

000

No lattice fringes this
direction
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Balancing Spherical Aberration against the Diffraction Limit
(Less diffraction with a large aperture – must be balanced against Cs)

4/34/1
min 43.0 λsCd =

A more accurate wave-optical treatment, allowing less than λ/4 of phase shift 
across the lens gives

Minimum Spot size:

4/1
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
opt C

λαOptimal aperture:

At 200 kV, λ=0.0257 Ǻ, Cs = 1.0 mm, dmin = 1.55Ǻ and αopt = 10 mrad
Cs = 1.2 mm, dmin = 1.59Ǻ and αopt = 9.6 mrad

Cs = 0.5 mm, dmin = 1.28Ǻ and αopt = 12 mrad
Cs = 0.6 mm, dmin = 1.34Ǻ and αopt = 11 mrad



David Muller 2006 46D. Muller, Bell Labs, 1998

Multislice simulated Annular-Dark-Field Images 
of Silicon [110] in a 200 kV STEM

c dba

(a) The projected potential along [110]
(b) The ADF image for a 2.7 Å thick crystal
(c) The ADF image for a 81 Å thick crystal
(d) The ADF image for a 2.7 Å thick crystal (1.6 Å information limit)

(Cs=0.5 mm, Probe forming aperture=11.9 mr, ADF inner angle=30 mr)

Note: (i) The dumbbells are visible even when the (400) spot is excluded
(ii) Except the dumbbell spacing is not 1.36A, but closer to 1.6A
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S. Hillyard, PhD Thesis,
Cornell University
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Beam Spreading

E0=200 keV E0=20 keV

1 µm of Carbon

Electron Range (in µm): 

5.1
0

064.0 ER
ρ

≈

(density ρ in g/cm3, E0 in keV)

R~ 100 µm at 200 keV
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Beam Spreading

Beam Spreading 
( )

0

5.1

E
Zt

∝

At 100 kV
0.16 nm for 10 nm thick C
1.8 nm for 50 nm thick C

At 300 kV

N. Zaluzec, Microscopy Today (2004)
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Beam Broadening in a-Si at 100kV

Loss of resolution, loss of apparent brightnessIncreased Apparent Source size

•Ignore for probes larger than 0.4Ǻ

How does an amorphous layer on the entrance surface degrade resolution?

•No FIB’ed samples!



Phase vs. ADF Contrast

David Muller, 2000

ADF Signal is much weaker than HR-TEM

E. J. Kirkland et al, Acta Cryst, 1987

0-200 mr
20-200 mr
50-200 mr

100-200 mr
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Imaging a Single Antimony Atom in 4.5 nm of Silicon
(the atom is 2.1 nm from the top surface)

ADF-STEMExit Wave Reconstruction

Cs = 0 mm
0.75 Å information limit

Cs=0.5 mm
(JEOL 2010F URP)

Multislice simulations assume a 200 kV electron beam

Sb contrast:  HRTEM 0%, EWR: 10% (5% at 1.2Å) , ADF-STEM:65%

HRTEM

Cs=0.5 mm
(JEOL 2010F URP)

Why do we get more signal in ADF?  Channeling!
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ADF in Thicker Samples

• Simple specimen transmission function 
model: 22~ thI ADF ⊗

• Suggests that wave amplitude is important, 
not phase as in conventional HRTEM

• Interaction of the fast electrons with the 
periodic lattice including phonons is difficult

• Numerical simulations
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Probe Channeling
z=0 nm

z=10 nm

z=33.0 nm

z=23.5 nm



ADF Signal tracks Probe Amplitude
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Channeling down 
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 [110] Si multislice
 fit to Bloch wave
 fit uncertainty band
 amorphous Si
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Signal vs Collection Angle
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Imaging Thick Cross-Sections

Gate Oxide Thickness: 20 Å

• ADF Images decay gracefully 
with increasing thickness

•Apparent Oxide Thickness is 
unchanged with thickness

•Apparent Interface Roughness 
increases from 1.6 to 2.7 Å rms

•“white band”  develops (depends 
on thickness and ADF angles)

3000 Å

5500 Å

6000 Å

1 nm

Poly-Si c-SiSiO2
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One Sb Atom vs. Depth

Scattering from one Sb atom ∝ Si scattering at the same depth.
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(c) zBi = 342 Å (d) zBi = 750 Å Wrong column
Appears bright! 

Dopants as probes of Beam Spreading 

(Multislice for 75.8 nm Si in 100 kV Cs-corrected STEM)

P. M. Voyles, D. A. Muller, E. J. Kirkland,  Microscopy and Microanalysis 10, 291-300 (2004). 



Channeling Down Si [110]

Si Si
probe

1.00.80.60.40.20.0

ψ(z)

1000
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400

200

0

z 
(n

m
)

 midpoint
 left column
 right column

• Probe doesn’t stay between 
atom columns -oscillates

•Almost entirely on atom 
columns at 100, 400Ǻ

•When on-column, scattering 
is large  

Will reduce dumbbell 
contrast
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Si Dumbell Contrast vs.Probe Angle
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On-column vs Off 
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Effect of Camera Length

y
x

simultaneous 
acquisition in 

exact registration

P. M. Voyles, D. A. Muller et al, Phys. Rev. Lett. 91, 125505 (2003). 
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Clipping an Image is BadClipping an Image is Bad
(and easy to do)(and easy to do)

x

τ

d

=
Black level set too high

*

Equivalent to multiplying by square wave
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Fourier Transform of a Square WaveFourier Transform of a Square Wave

x
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d k1/d 5/d3/d
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Fourier Transform of a Square WaveFourier Transform of a Square Wave

x

τ

d k1/d 5/d3/d

sinc(πnτ/T)

f = 1/nτ

FT

FT

d
1/d

multiplication convolution

Clipping adds extra spots 
To diffractogram

k1/d 5/d3/d
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Original image

clipped image

Original histogram Power Spectrum
Cut-off at 0.3 nm

clipped histogram
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Summary

• BF STEM – fake TEM

• LAADF STEM – strain contrast, single vacancy

• HAADF – depth dependent imaging of single dopants

• Check histograms to avoid clipping (extra spots)

• Ronchigrams – easier than imaging probe for align
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Comparison of Brightness Measurements
For Cold and Thermal Field Emitters

David Muller
Applied and Engineering Physics

Cornell University

• Few good measurements of Brightness.

• Need to measure or extract the source size (easy to overestimate)

• No reliable studies of Brightness vs. Field, Temperature or monochromation

Current State of the Art:
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Sample Tilt in ADF-STEM
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300Ǻ of [011] Si200Ǻ of [001] SrTiO3
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Up to~ 5 mrad of mistilt is OK before fringe contrast is reduced

(200kV, 10 mrad)


