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Abstract

This is a tutorial on scanning and fixed beam transmission electron microscope image simulation
using the multislice method. It is the second in a series of lectures given in the summer school held at
Cornell Univ. in the summer of 2006.

1 Introduction

Computer simulation of images has become a routine tool of high resolution transmission electron microscopy
(conventional and scanning) of materials. This is a short tutorial on using the multislice method. For a
more complete, formal discussion including detailed theory and a more complete list of references, see, for
example, Kirkland[13] and the list of additional books given at the end. This presentation is less formal
and gives some newer references and different examples. Also, this is the second of a series of lectures. It
is assumed that the reader is familiar with the first lecture on linear imaging theory (Fourier transforms,
transfer functions and point spread functions as in chap. 2,3,4 of Kirkland[13]).

2 Why do Image Simulations?

The resolution of high resolution conventional (CTEM) or scanning (STEM) transmission electron micro-
graphs of materials are primarily limited by the aberrations of the lenses in the microscope and multiple
scattering in the specimen. High resolution images of biological specimens are primarily limited by radiation
damage, which is a different issue and will not be considered here.

Even for very thin specimens, the imaging electrons will likely interact strongly enough with the specimen
to be scattered more than once while traveling through the specimen. This multiple scattering (also called
dynamical scattering) may influence the image in unexpected ways such that the image is no longer related
to the specimen structure in an simple manner. The goal of image simulation is to understand this image
structure better. In summary the main goals of image simulation are:

understanding: Image simulation may help to understand the detailed structure in the image to separate
what is due to the specimen, what is due to the instrument and help unravel the effects of multiple
scattering.

improvement: Image simulation may help to understand how the image is formed and generate intuition
on ways to improve the image and instrumentation.
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3 Relativity and Quantum Mechanics

The electron energies used in the electron microscope are typically large enough to produce electron velocities
that are a significant fraction of the speed of light c. For example a 200 keV electron is traveling at about
half the speed of light. This high energy produces some changes in the electron properties as compared to
its low energy non-relativistic properties. The electron velocity, mass and wavelength are shown in fig. 1.
The electron velocity and mass are significantly altered by relativity. Please refer to chp. 2 of Kirkland[13]
for the relevant equations.
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Figure 1: Relativistic properties of the electron. The velocity v relative to the speed of light c (in vacuum)
is on the left and the wavelength is on the right. Both non-relativistic and relativistic values are shown. The
ratio of the relativistic mass m to the rest mass m0 of the electron is also shown on the left.

In the electron microscope the electron beam has a typical energy in the range 100 keV to 1 Mev. Typical
potentials in the specimen are usually much less, in the range 10 eV to 1000 eV, so the incident electrons
pass through the specimen with a relatively small change.

On the atomic scale, the behavior of the electron is governed by its quantum mechanical wave nature as
described by the Schrödinger equation:

[
− h̄2

2m
∇2 − eV (~x)

]
ψ(~x) = Eψ(~x) (1)

where ψ(~x) is the wave function of the electron at position ~x, h̄ = h/2π is Planck’s constant divided by 2π,
m is the mass of the electron, e = |e| is the magnitude of the charge of the electron, E is the total energy of
the electron and −eV (~x) is the potential energy of the electron.

The Schrödinger equation is not relativistically correct. The Dirac wave equation is relativistically correct
and properly predicts the electron spin and the existence of the positron, but however is more difficult to deal
with mathematically. An approximate compromise of using the Schrödinger equation with the relativistic
electron mass and wavelength is usually adequate for the medium energies typically used in the electron
microscope (Fujiwara[4]), and will be used here.

4 The Transmission Electron Microscope

There are two fundamental forms of a transmission electron microscope (TEM) as is illustrated in a simplified
schematic form in fig. 2. In the conventional or fixed beam form (CTEM) the specimen is illuminated by
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Figure 2: Simplified schematic of the Conventional Transmission Electron Microscope (CTEM, left) and the
Scanning Transmission Electron Microscope (STEM, right). Neither drawing is to scale.

a parallel (or nearly so) beam of electrons. An objective lens forms an image of the specimen in parallel
with a fixed beam similar to a standard light optical microscope. The bright field image is typically phase
contrast. In the scanning form (STEM) a small focused probe (of order 1 to 2 Å in diameter) is scanned
across the specimen in raster form. The transmitted electrons that have been scattered to large angles form
an annular dark field (ADF) image that has a strong dependence on the atomic number of the atoms in the
specimen (Z-contrast). The transmitted electrons that are on the optic axis (nearly unscattered) form the
bright field (BF) image which exhibits phase contrast similar to CTEM (if set up correctly).

Generally speaking, bright field (BF) CTEM has a strong signal but lower resolution and more ambiguity
in the image. ADF-STEM has higher resolution and a more direct (less ambiguous) relationship to the
specimen but a smaller signal.

5 Numerical (Computer) Calculations for Thick Specimens

Electrons interact strongly enough with the specimen that ”thick” means more than a few Angstroms for
most materials. In most case the electrons will undergo multiple (or dynamical) scattering as they pass
through the specimen. This section will discuss the propagation of the electrons through the specimen and
the next section will add instrumental effects such as lens aberrations. There are two principle means of
calculating a transmission electron microscope image (scanning or conventional), the Bloch wave method
and the multislice method.

Bloch wave: The electron wave function is expanded in Bloch waves inside a crystalline specimen, which
have the periodicity of the specimen and satisfy the Schrödinger equation. Requires finding the Eigen-
vectors and values of a large matrix. Good for small perfect crystals but the computer time scales as
N3 where N is the number of Bloch waves or Fourier components (N increases with resolution).

multislice: Divide the specimen into many thin slices. Alternately transmit and propagate the slowly
varying portion of the wave function through the specimen. Will work on crystalline or nearly amor-
phous specimens. Using an efficient fast Fourier transform (FFT) the computer time scales approx. as
N log(N) where N is the number of Fourier components (N increases with resolution).
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The Bloch wave approach is described in several books (for example, DeGraf[7]) and will not be discussed
in detail here. The multislice method was first described by Cowley and Moodie[2] and later expanded by
Goodman and Moodie[6]. The fast Fourier transform (FFT) was first added by Ishzuka and Uyeda[9] and
Bursill and Wilson[1] and greatly improves the computational efficiency (reduces CPU time) of the multislice
method. The FFT based multislice method is presented in Kirkland[13] and will be discussed briefly below.

The wavelength of a 200 keV electron is λ= 0.025 Å. A straightforward numerical sampling of this
wavelength would require of order 10 points per wavelength. To sample a small specimen in a cube of
100 Åper side would require about (100/0.0025)3 or 6.3×1013 points. Even in single precision (four bytes
per value) this would require 2.4×105 Gbytes of memory, which is clearly not possible in the near future.
Clearly some other approach must be found. The Bloch wave method solves this problem by expanding in
a small basis set plane waves so real space sampling is not really used. However there is still a finite sample
in reciprocal space.

5.1 Multislice

The multislice method solves this sampling problem by factoring the electron wave function into a part that
varies with the wavelength and a slowly varying portion that is sampled in real space at a much larger
sample spacing (because the specimen has only a small effect on the scale of the electron wavelength). The
full electron wave function ψf traveling in the positive z direction is:

ψf = ψ exp(2πiz/λ) (2)

where λ is the electron wavelength and ψ is the slowly varying portion of the wave function. Insert this ex-
pression for ψf into the Schrödinger equation and solve for the slowly varying portion of the wave function ψ.
Now the sampling of the slowly varying portion may be spaced many wavelengths apart. This approximation
is justified because the incident electron beam is a relatively high energy and is not changed significantly on
the scale of its wavelength. The possibility of back scattered waves will also be neglected.

Figure 3: The multislice approximation converts a specimen (left) into many thin slices (right). The electron
wave is incident on the top of the specimen, is transmitted through the specimen and exits on the bottom.
Each slice (of the specimen) is thin enough to be approximated as a simple phase shift of the electron wave
which is propagated between slices as a free space wave.

The second approximation in the multislice method is the actual slicing of the specimen as in fig. 3. The
specimen is sliced up much like a loaf of bread. The incident wave enters the specimen at the top, propagates
through the specimen and exits at the bottom. In CTEM the incident wave is a uniform plane wave and in
STEM the incident wave is a small focused probe (at each position in the image). The specimen is divided
into many slices, each of which is thin enough to be approximated as a simple phase shift of the electron
beam. The electron beam propagates between slices as a small angle outgoing wave (Fresnel diffraction).
The wave is transmitted through a slice of thickness ∆z and then propagates a distance ∆z to the next layer.

With some mathematical manipulation of the slowly varying portion of the electron wave function in the
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Schrödinger equation and dropping small terms yields the following for the multislice equation:

ψ(x, y, z + ∆z) = p(x, y, ∆z)⊗ [t(x, y, z)ψ(x, y, z)] +O(∆z2) (3)

where ⊗ represents convolution and ∆z is a small slice of the specimen along the beam direction. The
transmission function for the portion of the specimen between z and z + ∆z is:

t(x, y, z) = exp

[
iσ

∫ z+∆z

z

V (x, y, z′)dz′
]

(4)

where σ = 2πmeλ/h2 is the interaction parameter, and V (x, y, z) is the potential due to the atoms inside the
specimen (calculated from relativistic Hartree-Fock for isolated atoms). The propagator function p(x, y, z)
and its Fourier transform P (k) are:

P (k, ∆z) = exp
(−iπλk2∆z

)

p(x, y, ∆z) = FT−1 [P (k, ∆z)] =
1

iλ∆z
exp

[
iπ

λ∆z
(x2 + y2)

]
(5)

which is equivalent to Fresnel diffraction (near field) for a distance ∆z. If each slice of the specimen is labeled
with subscript n (z = n∆z) then the multislice equation becomes:

ψn+1(x, y) = pn(x, y, ∆zn)⊗ [tn(x, y)ψn(x, y)] +O(∆z2) (6)

Convolution scales as N2 where N is the number of points and is still a very time consuming calculation on
the computer. However, this form of the equation is very well suited for use of the Fast Fourier Transform
or FFT, which is a highly efficient well developed numerical algorithm. The CPU time for the FFT scales
as N log(N). Using the FFT, signified as FT :

ψn+1(x, y) = FT−1 {Pn(kx, ky, ∆zn)FT [tn(x, y)ψn(x, y)]}+O(∆z2) (7)

The multislice method reduces to a succession of transmit and propagate operations with a fast Fourier
transform in between each which is summarized in fig. 4.

Figure 4: The multislice method successively transmits the electron wave through each slice and then
propagates it to the next slice. The incident wave is a plane wave for CTEM (shown) and a focused probe
for STEM (not shown).

5.2 Instrumental Effects (Lens Aberrations)

The image in both the CTEM and the STEM is strongly affected by the aberrations in the objective lens.
This is the topic of the previous lecture and is covered in more detail in chp. 3 and 5 of Kirkland[13], and
is summarized here.
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In the CTEM the incident wave is a uniform plane wave which is transmitted through the specimen
(multislice calculation). The electron wave function exiting the crystal ψT (~x) is imaged by the objective lens
onto the CCD image detector. In practice there are several projector lens after the objective but these can
be ignored because the effects of the objective lens have been greatly magnified. The aberrations (mainly
spherical and defocus) influence the image as:

g(~x) = |ψT (~x)⊗ h(~x)|2 (8)

= |FT−1[ΨT (~k)H(~k]|2 (9)

where h(~x) is the point spread function of the objective lens. ~x is the position in the image and ~k is the
spatial frequency vector conjugate to ~x. ΨT (~k) is the Fourier transform of ψT (~x). The convolution is more
efficiently done as an FFT and the Fourier transform of the point spread function, also known at the transfer
function is:

H(~k) = exp[−iχ(~k)] (10)

χ(~k) =
2π

λ

[
1
4
Csλ

4k4 − 1
2
∆fλ2k2

]
(11)

where Cs is the coefficient of spherical aberration (third order), and ∆f is defocus

In the STEM the lens is before the specimen not after as in the CTEM. The objective lens forms a small
focused probe incident on the specimen which is scanned across the specimen. The wave function of the
probe is calculated as:

ψP (~x, ~xP ) = AP

∫

apert

exp[−iχ(~k)− 2πi~k · (~x− ~xP )]d~k (12)

where ~xP is the position of the probe and the integral is over the objective aperture. The leading constant
Ap is chosen to normalize the total integrated intensity (usually to unity). Generally speaking the optimum
aperture and defocus are the Scherzer conditions:

∆fopt =
√

1.5Csλ (13)

αmax =
(

6λ

Cs

)1/4

(14)

where α is the semi-angle of the electron rays in the lens (objective aperture size). The optimum conditions
for ADF-STEM are usually slightly smaller values for both, ∆f ∼ √

Csλ and αmax ∼ (4λ/Cs)1/4. The
resolution in BF-CTEM is approx. 0.7(Csλ

3)1/4 and the resolution in ADF-STEM (probe size) is approx.
0.43(Csλ

3)1/4. See Kirkland[13] for a more detailed discussion of astigmatism and partial coherence in
BF-CTEM.

6 What Can Go Wrong

There are a large number of things that can go wrong in an image simulation. The proposed specimen
structure must be specified in some detail, usually in the form of a list of atomic coordinates and atomic
numbers in a unit cell. Even less well known is the thickness of the specimen. Usually a large sequence of
possible specimen thicknesses are calculated and compared to experiment.

The instrumental (optical) parameters such as the aberration constants (Cs, etc.) and aperture size of
the objective lens and lens defocus must be known. Usually defocus is not know very well (particularly in
bright field phase contrast). Frequently a defocus series is calculated for comparison to experiment. There
are also a variety of parameters such as defocus spread, illumination angle etc. that are hard to estimate
but can influence the image (see Kirkland[13] for more details).
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There are also many parameters that are solely related to the calculation and have very little to do
with the microscope or specimen but can dramatically affect the calculation. These parameters include the
sampling size (pixel size) in the image and slices and the slice thickness itself.

Multislice almost always uses an FFT to reduce the total CPU time. The FFT is a discrete Fourier
transform which repeats the image infinitely in all directions. Although the image is only displayed as a
single image you should remember that it is really an infinite array of identical side-by-side images. This
produces a strange effect called the wrap-around error. The left side of the image in essence touches the right
side of the image (and vice versa) and the top of the image touches the bottom of the image (see fig. 6.10 and
6.11 in Kirkland[13]). To use the FFT each image and slice must obey periodic boundary conditions or be
an integer number unit cells of the specimen (called a super cell). Interfaces and defects must be imbedded
inside a large super cell (brief discussion in section 6.8 of Kirkland[13]).

In summary, some of the things that need to be specified correctly are:

specimen parameters: atomic coordinates and numbers of the specimen and thickness of specimen

instrumental parameters: defocus, Cs, objective aperture, etc.

sampling size: number of pixels in the image and slice and the slice thickness. Ensure that the total
integrated intensity is at least 0.9 or higher (1.0 to start). Calculations with slightly higher or lower
sampling should yield the same result if the sampling is adequate.

slice thickness: usually the slices should correspond to the existing atomic layers in the specimen. If the
slices are too thick then the total integrated intensity will decline too much (as in the sampling size
issue) and may produce false high order Laue zones corresponding to the slice thickness.

wrap-around error: each slice must obey periodic boundary conditions

7 Programs

There are a variety of image calculation programs in existence. Many have been written for private use only.
Some have been made available commercially for varying amounts of money and some are available as a free
download. A partial list of some programs is shown in table 1.

program author year type comments
SHRLI O’Keefe and Buseck[14] 1978,9 M
TEMPAS Kilaas[11] 1987 M
EMS Stadelmann[19] 1987 B
NCEMSS O’Keefe and Kilaas[15] 1988 M
MacTEMPAS Kilaas[12] ? M on-line
TEMSIM Kirkland[13] 1998 M on CD
? Ishizuka[8] 2001 B, M online
? deGraf[7] 2003 B online
JEMS Stadelmann[20] 2004 B, M online
WebEMAPS Zuo[18] 2005 B online

Table 1: Some image simulation software packages appearing in the literature or on-line. Type M is multislice
and type B is Bloch-Wave. Some of the listed programs may be commercial. Many other private programs
likely exist.
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8 Examples

Silicon is a technologically important material and is well known to many people. When viewed down the
110 direction, groups of atoms are far enough apart to be visible in many microscopes currently available.
The structure of the three main projections of silicon are summarized in fig. 5.15 (and fig. 7.1 for 110 GaAs)
of Kirkland[13]. The 110 projection has pairs of atoms spaced 1.4Å apart (the so-called dumb-bells) and
these pairs are repeated at roughly 3.1Å intervals. The unit cell size is 3.8Å×5.4Å in the image plane and
3.8Å along the beam direction. The unit cell divides easily into two layers each 1.9Å thick. The easiest
approach to programming multislice using an FFT is too require the unit cell to be rectangular because
the 2D FFT is decomposed into successive 1D FFT’s along each direction. This projection of silicon is
conveniently rectangular. Most non-rectangular unit cells can be converted to an equivalent rectangular unit
cell by taking a larger volume (see discussion in chp. 7 of Kirkland[13]).

Silicon is a good place to start to learn how to do a multislice image calculation because it has a simple
unit cell and low atomic number atoms. High atomic number atoms or high density atoms usually require
a much high sampling (more pixels and much more computer time). Silicon can be done with a relatively
small number of pixels with only a small amount computer time. This example will use the programs given
in Kirkland[13]. The programs are written with a simple command line interface so they can be run on
different machines (no specific machine dependencies). The lack of a fancy graphical user interface may not
be pleasant but it makes the programs easily portable.

First generate a description of the specimen. There are two different layers, and there should be a text
file with the atomic coordinates for each layer (two files). The input file for the first layer is:

3.8396 5.4300 1.9198
0

14
1.0000 0.0000 0.0000
1.0000 0.5000 0.7500

The input file format is described in detail on pg. 164 of Kirkland[13]. The first line is the unit cell
size (in Å). The second line is the number of symmetry operations (none here) to apply to the following
coordinates (not listed). The last three lines are the atomic number followed by the coordinates for this
atomic number. The first number on each line is the occupancy (1.0 in this case) followed by the coordinates
relative to the unit cell size. There can many different atomic numbers each with its own set of coordinates.
There should be two blank lines at the end of the file. The second layer is described in a similar manner as:

3.8396 5.4300 1.9198
0

14
1.0000 0.0000 0.2500
1.0000 0.5000 0.5000

Next the program atompot is run for each of this input files to produce a binary (TIFF format) file
containing the projected atomic potential of each of these layers. This program allows the unit cell to be
expanded an integer number of times in each direction and allows the user to specify the number of pixels
(sampling). In practice you need to do a sequence of runs to determine the proper sampling (number of
pixels and number of unit cells) that produce good results as described in section 7.1 of Kirkland[13] for
gallium arsenide. Silicon is a light atom and only requires a modest sampling. It has been found that 6×4
unit cells of 256×256 pixels works reasonably well for BF-CTEM of this specimen.
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8.1 BF-CTEM

The program mulslice takes these potentials as input to run the multislice algorithm itself. The total specimen
is specified as the layer repeat structure. For example, 100Å of this specimen is specified as 26(ab) meaning
26 repeats of (ab) to give ababab... The result for this thickness is shown in fig. 5. This is the wave function
of the electrons exiting the bottom of the specimen (in fig. 3).

a b

Figure 5: The wave function (200 keV) transmitted through 100 Å of 110 silicon calculated using the
multislice method. The real part is on the left and the imaginary part is on the right. Silicon atoms are dark
in the real part and white in the imaginary part (contrast may vary with thickness). The scale bar is 5 Å.

The results of mulslice are next feed into the program image to generate images with different defocus.
The programs are separated so that a single result of multislice can be used many different times to generate
several different images with different defocus values. Typically image is much quicker than mulslice.

The results of applying image to the mulslice results are shown in fig. 6. Each row is a different
specimen thickness (a different run of mulslice) and each col. is a different defocus value (one run of
mulslice per row and one run of image per image). Each image also includes the effects of partial coherence
with an illumination angle 1 mrad and defocus spread of 100Å (theory described in Kirkland[13]). An
objective aperture larger than optimum (15 mrad instead of 12 mrad) was used as is common in practice
because the partial coherence effect tend to produce a virtual aperture. Defocus values were chosen as
∆f =

√
(2n− 0.5)Csλ for n = 1, 2, 3.... n=1 is the Scherzer condition and other integer values have some

interesting properties (see section 3.1 of Kirkland[13]). This calculation took just a min. or two on a standard
desktop computer.

There are several interesting effects in fig. 6. Both defocus and thickness influence the image. In
particular there is a contrast reversal at the thickest specimen (bottom row). In bright field phase contrast
each atom should be dark on a white background. However the situation has reversed in the thick specimen.

8.2 ADF-STEM

ADF-STEM takes significantly more computer time for two reasons. A multisilce calculation must be
performed at each position of the probe, and the ADF detector typically extends to very high angles which
need to be calculated (much higher sampling or more pixels). It is sometimes easier to figure out the input
files using CTEM (as in the previous section) and then switch to STEM. The program stemslic takes the
same input files as mulslice (both from atompot).

Because of the large computer time requirements stemslic can produce simple line scans instead of images
which run faster. Also the atomic potentials, and electron wave function do not have to have the same number
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a b c

d e f
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Figure 6: BF-CTEM images calculated for 110 silicon using the multislice method for 200 keV electrons
with Cs= 0,7 mm. Specimen thickness increase from top to bottom and defocus increases from left to right.
Thickness is: a,b,c) 50Å, d,e,f) 100Å, g,h,i) 200Å. Defocus is: a,d,g) 513Å, b,e,h) 983Å, c,f,i) 1291Å. The
scale bar is 5 Å.

of pixels and only a small portion of the available size need be calculated.

The optical parameters for an optimum (smallest) probe are ∆f =
√

Csλ ∼ 400Å, and αmax ∼ 11 mrad.
Section 7.1 of Kirkland[13] tests the sampling requirements for 110 GaAs. Because silicon is a lighter atom,
these requirements should also satisfy silicon, which will be modeled as 6 by 4 units cells (in the supercell).
Usually you should repeat the procedure in section 7.1 for each new specimen. The ADF detector typically
extends to very high angles which also requires high sampling. With 512×512 pixels the maximum scattering
angle is about 186 mrad. (for this supercell size and electron wavelength) which will be sufficient (200 mrad
might be better but would require more computer time).
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Figure 7: ADF-STEM line scan calculated for 110 silicon using 200 keV, Cs= 0.7mm, ∆f= 400Å, obj.
aperture 11 mrad. The scan is along a col. parallel to the silicon dumbbells for three different thickness
(shown).

Fig. 7 shows the results of running stemslic as a line scan along a col. parallel to the silicon dumbbells
(close pairs of atoms). The projected atomic potentials calculated by atompot as described in the previous
section on BF-CTEM were used (but with more pixels, higher sampling). These optical parameter should
produce a probe size of about 1.4Å, so the silicon atom pairs should just be resolved, which they are. The
ADF signal increases nearly linearly with thickness unlike BF which has reversed contrast. The signal from
100Å thickness is about twice that of 50Å thickness, however the signal from 200Å thickness is not quit
twice that of 100Å thickness. ADF-STEM is much closer to the actual structure in the specimen, but still
has a few small nonlinearities that must be understood. Heavier atoms or thicker specimens will have more
nonlinear feature in both BF and ADF (BF is always more of a problem in this respect).

a b

Figure 8: STEM images calculated for 110 silicon (50 Å thick) using 200 keV, Cs= 0.7mm, ∆f= 400Å, obj.
aperture 11 mrad. The BF image (detector angles 0 to 1 mrad) is shown on the left and the ADF image
(detector angles 40 to 150 mrad) is shown on the right. Atoms should be black in BF and white in ADF.
One unit cell of 32 by 32 pixels was calculated and expanded to several unit cells as shown. This took about
40 min. of computer time. The scale bar is 5 Å.

Fig. 8 show an ADF-STEM image of 110 silicon. Only the thinnest specimen was calculated to limit
the computer time. Several different detector geometries can be run at the same time with no significant
increase in computer time. The BF image (on left) should be nearly identical to the image in CTEM (which
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it is) by the reciprocity theorem. The ADF image (on right) illustrates that the silicon atom pairs are just
barely resolved as expected.

9 Exercises

[1] Repeat the above calculations for BF-CTEM images of 110 silicon (some portion of fig. 6). Try one or
more thickness and defocus values. If time permits, compare the images to what you get with a Scherzer
aperture size of 12 mrad. Some of these images may exhibit frequency doubling where the lattice spacing
becomes half its expected value (this is due to a complicated interference of Fourier component of the image
that have been phase shifted in a nonlinear manner by the specimen and objective lens).

[2] Repeat one of the above line scans for ADF-STEM of 110 silicon.

[3] Try to calculate the image of an edge of a thin (50 to 100Å) silicon 110 crystal with a single heavy
(dopant) atom on the exit surface in the crystalline portion. The edge of the crystal should show a Fresnel
fringe in BF but not in ADF, and the heavy atom should be visible in ADF but not in BF. You have to
create a long narrow unit cell that is half filled with silicon and use atompot to expand in only one direction.
There should be three potential files all together, two for silicon and one for the single heavy atom (must
exactly match the size of the silicon unit cell). To keep the computer time to something that is reasonable
only use a thin crystal and do only a line scan in ADF-STEM (be careful to hit the center of the single heavy
atom).

10 Further Reading

Below is a list of some books on transmission electron microscopy that might be of interest. It is not
comprehensive and there may be many worthwhile books that have been left out (apologies to the authors).
This is just a starting point.

Some Recent Books on Electron Microscopy

1. M. De Graf, Intro. to Conventional Transmission Electron Microscopy, Cambridge Univ. Press, 2003[7]

2. J. W. Edington, Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold, 1976[3]

3. B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Springer,
2001[5]

4. R. Keyse et al, Intro. to Scanning Transmission Electron Microscopy, Springer, 1998[10]

5. E. J. Kirkland, Advanced Computing in Electron Microscopy, Plenum, 1998[13]

6. L. Reimer, Transmission Electron Microscopy, third edition, Springer-Verlag, 1993[16]

7. J. C. H. Spence, Experimental High-Resolution Electron Microscopy, Oxford University Press, 2003[17]

8. J. C. H. Spence and J. M. Zuo, Electron Microdiffraction, Plenum Press, 1992[18]
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